ATTENTION!! ATTENTION!

EPA REGION-9 SUPERFUND RECORDS CENTER

2047-00405

WASTE DISPOSAL INC

You are responsible for this file. Do not pass on to anyone else. When finished, return to:

EPA-9 Superfund Records Center 75 Hawthorne Street 9th floor, H-6-1 San Francisco, CA 94105

PROPERTY OF EPA REGION 9

HAZARDOUS WASTE MANAGEMENT DIVISION

PLEASE RETURN TO RECORDS CENTER 215 FREMONT STREET SAN FRANCISCO, CALIFORNIA 94105

AR0175

SUPERFUND
1992 GROUNDWATER MONITORING REPORT
WASTE DISPOSAL, INCORPORATED
SANTA FE SPRINGS, CALIFORNIA

Prepared by: Katherine J. Baylor
Laboratory Support Section
Environmental Services Branch
U.S. Environmental Protection Agency

January 1993

TABLE OF CONTENTS

		Page
Intr	oduction	1
1.0	Objective	1
2.0	Background	1
	2.1 Site History	1
	2.2 Previous Investigations	3
	2.3 Hydrogeology	6
3.0	Maps	7
4.0	Methods and Scope of work	7
5.0	Results of Analysis	9
	5.1 Groundwater Elevations	9
	5.2 Groundwater Quality	9
6.0	Conclusions	12

FIGURES. TABLES. and APPENDICES

Figu	<u>res</u>	
2.1	Site Location Map	13
2.2	WDI site and monitoring well locations	14
2.3	1958 Aerial photo of WDI site	15
2.4	Land Use Map	16
2.5	Regional Geology	17
2.6	Regional Aquifer Cross Section	18
2.7	Groundwater Level Contour Map	187
5.1	Water level elevation changes, 1992	21
	6	
Tabl	<u>es</u>	
4.1	Field Measurements	19
5.1	Water Level Elevations	20
5.2	Metals Concentrations	22
Appe	ndices	
A	Graphs - Total and Dissolved Metals	
В	Data Validation Reports - February	
С	Data Validation Reports - May	
D	Data Validation Reports - August	
E	Groundwater Purging/Sampling Logs	
F	Well Condition Inventory Logs	
G	Chain of Custody and Field QA/QC Forms	
н	Health and Safety Plan	

INTRODUCTION

Groundwater samples were collected from 11 wells during three sampling events in 1992 (February, May, and August) at the Waste Disposal, Incorporated (WDI) Superfund site in Santa Fe Springs, California.

1.0 OBJECTIVE

Prior to this investigation, groundwater at the WDI site had been sampled twice to characterize contamination at the site; the most recent sampling prior to this investigation was conducted by EBASCO in January 1989. The previous investigations found low-level contamination in the shallow aquifer under the WDI site. The locations of the existing wells do not adequately characterize the groundwater quality of the deeper aquifer; however, previous investigations indicate that it has not been impacted, and was not included in this scope of work.

The objective of this sampling effort was as follows:

To confirm previous analytical results and increase the data base for organic and inorganic parameters in the shallow aquifer at the site.

2.0 BACKGROUND

2.1 SITE DESCRIPTION

The following site history is taken from the WDI Site Final Remedial Investigation Report (EBASCO Services Incorporated, 1989).

The Waste Disposal, Inc. (WDI) site consists of a 43-acre parcel located in the city of Santa Fe Springs, Los Angeles County, California (Figure 2.1). The site is bordered on the northwest by Santa Fe Springs Road, on the northeast by a Fedco food distribution center and St. Paul's High School, on the southwest by Los Nietos Road, and on the southeast by Greenleaf Avenue (Figure 2.2).

The WDI site was operated as a landfill, which, over a period of 40 years, accepted various oil-field and industrial wastes. The wastes were contained in a 1,000,000-barrel capacity concretelined reservoir and several unlined waste handling areas. Prior to 1949, operations at the facility were unregulated; between 1949 and 1965-66, Waste Disposal, Inc. operated as a permitted landfill. A profile of the site contamination indicates the presence of hydrocarbons, oil-field wastes containing metals, and volatile organics in the subsurface materials.

2.2 SITE HISTORY

Waste disposal operations at the WDI site from 1949 until closure were sporadically documented. Many documents allegedly pertaining to the materials disposed have been destroyed (Herrera 1986). Thus, a comprehensive site disposal history is not available. However, the Potentially Responsible Party Search conducted by ICF Technology (1987) and a records search and review of aerial photographs, as described below, have provided some information regarding past waste disposal activities at WDI.

The Santa Fe Springs Oil Field was discovered by Union Oil Company of California in 1919. Sometime thereafter (probably between 1919 and 1928), a 1,000,000 barrel (42 million gallon) capacity concrete lined reservoir was constructed at the WDI site. The reservoir was apparently used for petroleum storage. In the late 1920s, the WDI reservoir was decommissioned. Aerial photographs (WCCA 1928, 1937, 1945) indicate that a similarly sized reservoir was located across Santa Fe Springs Road, approximately 800 feet to the northwest, on land owned by Union Oil Company.

A review of aerial photographs (EMSL 1988) shows evidence of waste disposal at the site between the late 1920s and 1949. A 1937 photograph indicates that standing liquid was present outside of the reservoir to the northwest, southeast, and south of the reservoir inside dikes, and to the northwest and southwest of the reservoir outside dikes. Disturbed ground as well as areas of fill were present along Greenleaf Avenue and Los Nietos Road. A 1958 photograph shows standing liquid in the reservoir, as well as inside the diked area to the north of the reservoir, and outside the dike to the northwest (Figure 2.3).

In 1949, Fernando Caneer was granted a permit to operate a dump in the reservoir for the disposal of "solid fill, rotary mud, and other non-acid oil-well waste". In 1950, the County of Los Angeles issued to Whittier Area Disposal Co. (also known as Waste Disposal, Inc.) a permit for operation of the dump, allowing acceptance of rotary drilling mud, clean earth, rock, sand and gravel, paving fragments, concrete, brick, plaster, steel mill slag, and dry mud cake from oil field sumps. At the time, the one-million barrel capacity reservoir, located in the center of the site, was surrounded on three sides by an earth dike, which was itself surrounded by a channel. Many unlined ponds and waste handling areas also existed at the site.

Over the course of the next few years, further permits were issued to allow dumping of acetylene sludge (approximately 220 barrels/week) and 24 hour per day waste disposal. In 1955, a permit was issued to annex an area 600 feet north of Los Nietos Road, and west of the reservoir for the disposal of drilling mud. At least twice during facility operation, the reservoir and dike

system was inadequate to contain disposal liquids, sludges, and mud. In 1956, liquid wastes flowed into and were pumped through "gopher holes" in the dike into a surrounding channel and toward Greenleaf Avenue at a rate of about 5 gallons per minute. In 1962, after heavy rain, liquid containing oily substances seeped through the northerly dike onto the nearby St. Paul's Catholic High School grounds, traveling as far as the baseball diamond.

Between 1955 and 1960, numerous illegal discharges occurred in and around the site in the unlined waste handling areas. Liquids from Union Pacific Railroad and truck washings were disposed of directly on the ground, and facilities adjacent to WDI's eastern edge, along Greenleaf Avenue, also discharged waste liquids onto the WDI site.

As early as 1953, the Los Angeles County sewer system received liquids from WDI; early on, liquids were discharged to a channel leading to Greenleaf Avenue. Later (1960), a pipe from WDI was connected to the Los Angeles County sewer system with approval from the County of Los Angeles Department of Sanitation.

Beginning in 1958, solid fill was accepted and used to grade over the site. By September 1961, the reservoir was 50% full; by June 1962, it was 75% full. By November 1962, the reservoir was completely full of solid material; liquids flowed into diked areas. By October 1964, the site was closed to the public; final grading of the site continued until the end of 1966. Since that time, several businesses have moved onto the site.

2.3 PREVIOUS INVESTIGATIONS

The WDI site currently consists of many individually owned parcels of land (Figure 2.4). Several of these parcels and the central portion of the site, which contains the reservoir and several sumps, have been the focus of previous site investigations.

Prior to the Remedial Investigation, Dames and Moore conducted a series of studies at the WDI site to assess the nature and extent of subsurface contamination. These studies focused on the characterization of the soils and subsurface gas in the Toxo Spray Dust area, Campbell Property and the general reservoir area (Figure 3A). The study conducted in the reservoir area also included groundwater sampling and analysis at three monitoring wells installed around the perimeter of the WDI reservoir. The results of these investigations are summarized in the following sections.

Toxo Spray Dust - Toxo Spray Dust (Toxo) first owned and operated a pesticide manufacturing and storage facility adjacent to the WDI reservoir in 1953. In 1986, Dames and Moore personnel collected two samples from the flooring in the former dry-mix area of the Toxo production building and installed six shallow In late 1986, the Toxo operations building was vapor probes. demolished, and Dames and Moore collected two soil samples 10 inches below the former building location. Floor samples contained methylparathion, ethylparathion, endosulfan I, and endosulfan II. One of the soil-gas samples contained 231,000 ppm (23% by volume in air) of methane and 597 ppm of total nonmethane hydrocarbon as hexane. The soil samples contained malathion, ethylparathion, endosulfan I, aldrin, 4,4'-DDE and 4,4'-DDT. California Department of Health Service required the building to be demolished, which it was in 1986, with approximated 16 cubic yards of soil excavated and removed to a Class I landfill in Kettleman Hills, California.

Campbell Property - The Campbell property, located at the corner of Greenleaf and Los Nietos, was sampled on two occasions in 1986. A total of seven shallow (5 ft) organic vapor probes were installed. The results of soil-gas analyses indicated methane concentrations of 9,500 ppm and 11,200 ppm in two of the samples and a non-methane hydrocarbon contration of 29 ppm in only one sample. Additionally, the Dames and Moore study included 21 cone penetrometer soundings (CPT) to estimate the volume of waste and overburden. The CPT soundings indicated the presence of very soft sump materials possibly including desiccated muds and loose fill. The total volume of waste and overburden was estimated to be about 10,000 to 16,000 cubic yards.

Dames and Moore also drilled six soil borings on the Campbell property, four in areas where drilling muds were previously encountered in the shallow subsurface. Five soil samples with high OVA readings were retained for analysis, and found to contain moderate levels of napthalene, di-n-butyl phthalate, fluorene, phenanthrene, ethylbenzene, 2-methyl napthalene, isophorene, chrysene, and low levels of metals.

Reservoir Area - In 1984, Dames and Moore drilled four borings at the WDI site; one in the center of the concrete reservoir, and three around the perimeter of the reservoir to a depth of 18-22 feet. Samples were collected every 2.5 feet, and screened with an HNu photoionization detector to determine which should undergo laboratory analysis. In 1985, Dames and Moore collected 35 shallow soil samples from the WDI site, the St. Paul High School athletic field, and a vacant lot approximately 1,050 to 1,300 feet NW of the WDI site.

The results of these investigations indicated various levels of barium, cadmium, copper, lead, mercury, nickel, silver, vanadium, and zinc. Two of the borings also contained ethylbenzene,

tetrachloroethene, toluene, trichloroethene, total xylenes, napthalene, and phenanthrene.

Also in 1985, Dames and Moore installed one upgradient (MW-1) and two downgradient (MW-2,3) monitoring wells. Black (oily) solid waste was encountered during the drilling of MW-1 and MW-2 at approximately five feet depth. The wells were completed, and samples sent for analysis of priority pollutant organics and CAM metals. Because MW-3 was located near a pesticide storage area, the water sample was analyzed for organochloride pesticides and PCBs.

None of the Dames and Moore water samples contained detectable concentrations of either EPA priority pollutants or CAM metals. MW-3 contained 12 ppb of chlordane.

The Remedial Investigation was completed by EBASCO Services, Incorporated, in November 1989. The scope of the RI included soils, groundwater, and subsurface gas investigations, and the results are summarized below.

<u>SOILS</u> - Subsurface soil is the most prevalent contaminated medium at the WDI site. Chemical contamination is widespread. The WDI reservoir and waste handling areas are the major areas of contamination. The reservoir is covered by 5 to 15 feet of "relatively clean" artificial fill, underlain by black mud and sludge. The WDI waste handling areas are from 100 to 900 feet in width and 15 to 30 feet in depth. In general, soil contamination at the WDI site consists of the following:

- O Pesticides/PCBs are present at shallow depths .
- Volatile organic compounds, predominantly benzene, toluene, and xylene are present at all depths.
- Semivolatile compounds are present at all depths.
- Metals compounds are present at all depths.

GROUNDWATER - The results of chemical analyses of groundwater samples from WDI indicate that metals are the most widespread of contaminants. Metals were detected both upgradient and downgradient of the WDI reservoir. Highest concentrations of metals were found in the upgradient wells. Findings of the groundwater characterization study, as well as monitoring well design specifications, are shown in Appendix A. They include:

Monitoring well GW-26 was the only well that showed contamination by trichloroethene above the MCL standards. None of the other monitoring wells showed any contamination by volatile organics.

- Bis(2-chloroethyl)ether was the only semivolatile organic compound that was detected at more than one well, but it was not found consistently throughout the site.
- Pesticides/PCBs were not detected in any of the monitoring wells.
- Aluminum, iron, manganese, and selenium were found in concentrations exceeding the MCL standards in almost all wells. Both upgradient and downgradient wells showed high concentrations of these metals.

<u>SUBSURFACE GAS</u> - In general, the subsurface gases are distributed in and around the reservoir and waste handling areas. The reservoir and immediate surrounding area has subsurface vinyl chloride, benzene, and lower concentrations of chlorinated hydrocarbons as trace constituents in the gas. Methane was also identified in and around the reservoir, but not commonly elsewhere.

2.4 GEOLOGY AND HYDROGEOLOGY

Regional geology - The WDI site is located northwest of the Santa Ana Mountains, a dominant part of the northern Peninsular Ranges of coastal southern California which forms the eastern margin of the Los Angeles basin (Figure 2.5). Situated in the central block of the Los Angeles Basin, the WDI site is bounded on the northeast by the La Habra syncline and on the southwest by the Coyote Hills (Santa Fe Springs) anticline in an area commonly referred to as the Santa Fe Springs Plain. This plain is a gently rolling topographic feature which has probably been warped by the Santa Fe Springs-Coyote Hills anticlinal system and dips gently both to the northeast toward Whittier and to the southeast toward the Downey Plain. The difference in elevation ranges from 100 to 175 feet above mean sea level.

The surface of the Santa Fe Springs Plain and Coyote Hills reflects the structural high which trends northwest from the Coyote Hills in Orange County and is primarily developed in the underlying formations of Miocene and Pliocene age. In these sediments, the uplift consists of anticlinal folds which contain the Santa Fe Springs, Leffingwell, and West Coyote oil fields. The San Pedro and Lakewood formations are similarly folded across the uplift, and the folds developed in these sediments generally correspond to the underlying structures.

The Lakewood formation is exposed on-site at the surface and includes what has previously been termed "terrace deposits," "Palos Verdes sand," and "unnamed upper Pleistocene deposits." Maximum thickness of this formation has been measured to be about 340 feet at Lakewood, California. Materials range in size from cobbles to clay, with fine deposits separating the lenticular

sandy and gravelly beds.

Site Specific Geology - The WDI soil boring logs and cross sections indicate that WDI strata consist of fluvial deposits. The soils are coarse grained, occasionally pebbly, channelized sands surrounded in places by finer grained, lower energy, and laterally extensive beds. This suggests a braided river system depositional environment. The variable thickness (3-20 feet) and variable lateral extent (30-1500+ feet) of individual channel deposits below the site is a result of the continuous active fluvial channel-cutting/depositing events.

Regional Hydrogeology - The WDI site is situated in the Whittier Area of the Central Groundwater Basin. The Whittier Area is overlain by the La Habra Piedmont slope and part of the Santa Fe Springs Plain and the Coyote Hills. The known water-bearing sediments, extending to a depth of about 1,000 feet (800 feet below sea level), include Recent alluvium and the Lakewood and San Pedro formations (Figure 2.6). A part of the underlying Pliocene and older deposits may also contain water of good quality. Electric logs of oil wells indicate fresh water at a greater depth than has been penetrated by water wells.

<u>Site-Specific Hydrogeology</u> - The local hydrogeology is described based on information extracted from the boring logs and the water level elevations. In general, groundwater has been encountered at a depth of 46 to 65 feet below ground surface and from 91 to 106 feet above mean sea level. Accordingly, groundwater is approximately 34 to 44 feet below the bottom of the reservoir and 22 to 47 feet below the waste handling areas. The general direction of the groundwater flow is to the south and southwest (Figure 2.7).

3.0 MAPS AND FIGURES

Figure 2.1: Site Location map

Figure 2.2: WDI site and monitoring well locations

Figure 2.3: 1958 Aerial photo of WDI site

Figure 2.4: Land Use Map

Figure 2.5: Regional Geology

Figure 2.6: Regional Aquifer Cross Section

Figure 2.7: Groundwater Level Contour Map, December 1991

Figure 5.1: Water level elevation changes, 1992

4.0 METHODS AND SCOPE OF WORK

The methods used for collection and analysis of groundwater samples and water level measurements for this investigation are outlined in the document, <u>Superfund Field Sampling and Analysis Plan. Waste Disposal Incorporated</u>, Santa Fe Springs, California, 1992, U.S. EPA Region IX, Laboratory Support Section. Summarized below are the procedures that were followed and any deviations from the sample plan.

Quarterly groundwater sampling at the WDI site was performed by personnel of the U.S. EPA, Environmental Services Branch, during the months of February, May, and August of 1992. Eight shallow wells and three medium level wells were sampled during this investigation. In addition to the eleven groundwater samples collected, the following field quality control samples were also collected: field duplicate samples from well GW-1 and GW-7, two equipment blanks and one field blank.

Well purging was conducted with either a decontaminated PVC bailer or decontaminated piston pump. Well sampling was conducted with decontaminated teflon bailers. Prior to sampling each well, the water level was measured and the well was purged by removing at least three well volumes of water. Electrical conductivity, pH, and temperature were monitored and allowed to stabilize prior to sample collection.

The samples collected were sent for laboratory analysis to either the U.S. EPA Region 9 laboratory in Las Vegas, or a laboratory in the Superfund Contract Laboratory Program (CLP). The following analyses were performed on the groundwater samples collected during these three sampling events:

Organic Analyses: Volatile Organics

Semi-volatile organics

Pesticides/PCBs

Inorganic Analyses: Total Metals

Dissolved Metals

In addition, the following field measurements were made: pH, conductivity, temperature, and turbidity (Table 4.1).

Problems in the field or deviations from the procedures outlined in the sample plan are listed below:

February 1992: Well GW-9, which was originally included in the sampling network, was not sampled. Excessive rain prior to and during the sampling event left a pool of standing water over the well cover. During an attempt to sample, some stormwater run-off entered the well; therefore, this well was deleted from the 1992 sampling schedule due to the possibility of cross-contamination

from stormwater run-off.

May 1992: De-ionized water was used in place of tap water in the decontamination procedure. Due to uncertain quality of locally available tapwater, it was determined that all water for decon should be of de-ionized quality or better. The lock on well GW-04 was rusted shut; WD-40 was used to loosen it. Only 1.9 well volumes were purged from well GW-28 due to sampler's miscalculation of well volume; however, the pH, temperature, and conductivity readings were stable prior to sampling.

<u>August 1992</u>: The locks on wells GW-7 and GW-26 were rusted shut; WD-40 was used to loosen them.

5.0 RESULTS OF ANALYSES

A summary of the results of the 1992 groundwater investigation is discussed below. The following wells were each sampled three times during 1992: GW-1, 2, 4, 7, 10, 11, 23, 24, 26, 28, 30.

5.1 GROUNDWATER ELEVATIONS

Water levels in all the wells (27 total) were measured in December 1991, and a groundwater elevation contour map was prepared (see figure 2.7). No significant change from previous groundwater elevation contour maps was found; groundwater flow is generally south and southwest through the site.

Water levels were measured at each well sampled during each sampling event (Table 5.1). Water levels were measured before purging and after sampling each well, and no significant drawdown was detected in any well. From December 1991 to August 1992, the water level increased in all wells (Figure 5.1). The increase is most apparent between the February and May events, in which the water level rose by an average of 1.23 feet.

5.2 GROUNDWATER QUALITY

<u>Volatile Organics</u> The following volatile organics were detected:

		Amount	•	
Well #	<u>Date</u>	(daa)	<u>Oualifier</u>	<u>Contaminant</u>
11	5/92	1	J	Bromodichloromethane
11	5/92	8	J	Tetrachloroethene
11	8/92	17	N	Tetrachloroethene
26	2/92	8	J	Trichloroethene
26	5/92	7	J	Trichloroethene
7	5/92	1	· J	Carbon disulfide
7	8/92	41	· N	2-Butanone (MEK)
24	2/92	2	J	Tetrachloroethene

"J" qualifier indicates that values are estimated; data is valid for limited purposes. The results are qualitatively acceptable unless otherwise noted. "N" qualifier indicates presumptive evidence of the presence of the material. Compound identification is considered to be tentative, and the data are usable for limited purposes.

The presence of tetrachloroethene in well GW-11 and trichloroethene in well GW-26 confirm previous results. Bromodichloromethane in well GW-11 and carbon disulfide in well GW-7 were both found at a level of 1ppb during the May sampling event, and are probably mis-identified compounds. These compounds were not found in any other well at any time. The finding of 2-Butanone (MEK) in well GW-7 was probably caused by field contamination, as WD-40 was used to loosen the lock on this well during the August sampling event. MEK was not found in any other well at any time.

Acetone, chloroform, toluene, and methylene chloride were found in several wells and blanks, and were probably caused by field and lab contamination. None of these compounds were found in the wells above the levels found in the field and equipment blanks.

<u>Semi-volatile Organics</u>- Several phthalates, including Di-n-butylphthalate, bis(2-Ethylhexyl)phthalate, and butylbenzylphthalate were found at low levels in the blanks and samples. These are common laboratory contaminants and are probably artifacts.

Pesticides/PCBs- No pesticides/PCBs were detected in any wells.

<u>Metals</u>- Both total and dissolved metals were found in all the wells. Samples were analyzed for total and dissolved (filtered) metals. The use of <u>total</u> metals data is considered to be more

protective of human health, but may result in a high bias due to particulates (sediment) in the groundwater, which is not normally a component of drinking water. Dissolved metals are obtained by filtering the sample through a 0.45u filter. The filtered samples are more representative of drinking water, and of groundwater that is in a mobile phase.

The following metals were detected in some or all of the wells: aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, sodium, vanadium, and zinc. Tabular results are presented in Table 5.2, and graphed in Appendix A. The average values listed in the Table 5.2 and the graphs in Appendix A were determined by computing the mean of quantifiable metals (i.e., non-detects were not included in the averages). Non-detects are shown in Appendices B, C, and D with a "U" qualifier. The "U" qualifier indicates that the metal was not detected above the Instrument Detection Limit (IDL).

Aluminum (total) ranging from 2-28 ppm was found in all the shallow wells; in two deep wells, aluminum was detected below 1 ppm. Dissolved aluminum was not found in any well.

Antimony (total) was found in shallow wells GW-1 and GW-28 during the August sampling event at approximately 15ppb; dissolved antimony was detected in well GW-1 during the August event, and wells GW-2 and 30 in February.

Arsenic (total) was found in most of the shallow wells at levels below the MCL (currently 50ppb); in the dissolved form, arsenic was only found in GW-11.

Barium (total) was found in all the wells at levels from 30-500 ppb, but below the MCL of 1000ppb. Dissolved barium was uniformly found in all the wells at less than 50 ppb.

Beryllium (total) was found in all wells at levels below 1.1 ppb. As a dissolved constituent, beryllium was found at higher levels (up to 2.2ppb) in all the wells.

Calcium (total) was found in all wells to 300 ppm, and as a dissolved constituent at similar levels in all wells.

Cadmium (total) was detected in six of eight of the shallow wells during the February sampling event at levels ranging from 5.4 to 14.2 ppb, all above the MCL of 5ppb. Cadmium was not detected in any wells during the May or August sampling events. Dissolved cadmium was not found in any well.

Chromium (total) was found in all wells at levels approaching the MCL of 50ppb; as a dissolved constituent, chromium was found below 10ppb in 9 of the 11 wells.

Cobalt (total) was found in five shallow wells to 24ppb, and not found in any deep wells. Dissolved cobalt was not found in any well.

Copper (total) was found in all wells, but at levels far below the MCL of 1000 ppb; as a dissolved constituent, coppper was found below 10 ppb in several wells.

Iron (total) was found in all the shallow wells at levels greatly exceeding the MCL of 300ppb, and in the deep wells at levels near the MCL. As a dissolved constituent, iron was found in all wells at levels very far below the MCL.

Lead (total) was found in several wells at levels approaching the 20 ppb MCL, and exceeding the MCL in GW-01 in February. As a dissolved constituent, lead was detected in most of the wells, but at levels far below the MCL.

Magnesium was found in all wells, as both a total and dissolved constituent.

Manganese (total) was found in all shallow wells at levels greatly exceeding the MCL (secondary), and in deep wells near the MCL. As a dissolved constituent, manganese was found at very high levels in well GW-10, and at lower levels in most of the other wells.

Mercury (total) was detected in eight wells below the MCL of 2ppb, and in six wells as a dissolved constituent, also below the MCL.

Nickel (total) was found in all wells except GW-2, 7, and 24. As a dissolved metal, nickel was found in GW-2, 7, and 24, but not in GW-4, 10, 11, 26, and 30.

Potassium (total) was found in all wells, and at similar levels as a dissolved metal.

Selenium (total) was found in all wells at levels exceeding the MCL of 10 ppb. As a dissolved metal, selenium was found in all wells at levels exceeding the MCL. Values ranged from 11.9 to 89.7 ppb.

Sodium (total) was found in all wells, and at similar levels as a dissolved constituent.

Vanadium was found as a total and dissolved metal in both shallow and deep wells; no MCL has been set.

Zinc (total) was found in all wells at levels greatly below the MCL of 5ppm; as a dissolved metal, zinc was also found below the MCL.

6.0 CONCLUSIONS

Data collected during the 1992 monitoring is consistent with previous investigations at WDI with respect to both the hydrology and chemical properties. In particular, the presence of low levels of trichloroethene and tetrachloroethene was confirmed.

The presence of metals in the groundwater beneath the site was confirmed. Total (unfiltered) metals were found at levels exceeding the Safe Drinking Water Act Maximum Contaminant Limit (MCL) for cadmium, chromium, iron, lead (one well), manganese, and selenium. Dissolved (filtered) metals were found at levels exceeding the MCL for manganese and selenium.

The use of total metals data is considered to be more protective of human health, but may result in a high bias due to particulates (sediment) in the groundwater, which is not normally a component of drinking water. Dissolved metals are obtained by filtering the sample through a 0.45u filter. The filtered samples are more representative of drinking water, and of groundwater that is in a mobile phase.

Cadmium, chromium, lead, and selenium are primary MCLs, and iron and manganese are both secondary MCLs. Primary MCLs are health-based, enforceable standards; secondary MCLs are generally associated with aesthetic qualities such as taste, odor, or color.

Figure 2.1 Site location map

Figure 2.2 Site map and well locations.

Figure 2.3 1958 Aerial photo of WDI site

LAND USE MAP WASTE DISPOSAL INC.

Figure 2.4 Land Use Map

Figure 2.5 Regional Geology

Figure 2.6 Regional Aquifer Cross Section

SOURCE: Adapted from DWR (1961).

Figure 2.7 Groundwater Level Contour Map, December 1991

WASTE DISPOSAL, INCORPORATED 1992 FIELD MEASUREMENTS

PARAMETER		рН			IDUCTIVIT` mhos/cm)	Y	TEN	IPERATU (C)	JRE		TURBIDITY (NTU)	
WELL/DATE	2/92	5/92	8/92	2/92	5/92	8/92	2/92	5/92	8/92	2/92	5/92	8/92
GW-01	6.00	7.11	7.35	2140	2080	2480	22.00	22.00	22.30	NM	99.00	37.00
GW-02	7.16	6.91	7.25	1776	1970	2250	19.00	21.00	22.60	88.10	61.30	39.00
GW-04	6.42	6.65	6.97	1648	2020	1655	19.00	21.00	21.70	NM	187.50	>200
GW-07	6.80	6.43	7.27	1700	2480	2440	21.60	22.50	23.00	10.29	17.42	44.10
GW-10	7.68	6.50	6.90	1780	2100	1920	21.00	22.10	22.60	NM	>200	42.00
GW-11	6.12	6.89	7.18	1900	2400	2220	21.00	22.40	23.40	1.57	4.80	1.50
GW-23	6.93	7.10	7.16	NM	2110	2280	19.80	22.00	24.90	47.40	63.20	95.00
GW-24	6.95	7.05	7.31	NM	2060	2710	20.20	21.60	23.00	2.33	1.75	NM
GW-26	6.66	6.40	6.61	1730	1930	2270	20.30	22.50	23.00	NM	42.00	99.00
GW-28	6.60	6.94	6.58	2030	2300	2390	21.00	22.30	26.00	>200	>200	>200
GW-30	7.12	7.20	7.37	1503	1587	1750	19.90	21.50	22.80	7.70	4.40	4.76

NM = Not Measured

TABLE 4.1 FIELD MEASUREMENTS

WASTE DISPOSAL, INCORPORATED WATER LEVEL ELEVATIONS FEET ABOVE MEAN SEA LEVEL

ļ				OCT 88 TO						
	SURFACE			DEC 91		DEC to FEB		FEB to MAY		MAY TO AUG
LOCATION	ELEVATION	OCT 88*	DEC 91	CHANGE	FEB 92	CHANGE	MAY 92	CHANGE	AUG 92	CHANGE
GW-01	153.76	106.86	107.52	+0.66	108.26	+0.74	109.72	+1.46	110.58	+0.86
GW-02	149.61	107.41	107.85	+0.44	108.46	+0.61	109.87	+1.41	110.67	+0.80
GW-04	167.01	107.51	107.77	+0.26	108.29	+0,52	109.65	+1.36	110.51	+0.86
GW-07	154.78	106.68	106.80	+0.12	107.40	+0.60	108.71	+1.31	109.45	+0.74
GW-10	154.98	105.68	106.40	+0.72	107.04	+0.64	108.38	+1.34	109.15	+0.77
GW-11	154.91	105.01	105.95	+0.94	106.71	+0.76	107.93	+1.22	108.70	+0.77
GW-23	157.23	97.83	98.65	+0.82	98.99	+0.34	99.59	+0.60	100.05	+0.46
GW-24	157.03	92.63	92.70	+0.07	93.31	+0.61	94.51	+1.20	95.57	+1.06
GW-26	156.29	104.89	105.69	+0.80	106.20	+0.51	107.41	+1.21	108.23	+0.82
GW-28	157.56	103.76	105.26	+1.50	105.75	+0.49	107.02	+1.27	107.76	+0.74
GW-30	157.01	101.61	104.47	+2.86	105.11	+0.64	106.29	+1.18	107.01	+0.72

AVERAGE (FEET) +0.84 +0.59 +1.23 +0.78

TABLE 5.1 WATER LEVEL ELEVATIONS

^{*} Oct 88 water level measurement from final Remedial Investigation Report (EBASCO Services Inc), Nov. 1989

WASTE DISPOSAL, INCORPORATED

Figure 5.1 Water Level Elevations

			ALUMIN	UM				ANTIM	ONY				ARSEN	IIC	
LOCATION	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL
GW-01	46700	1620	9590	19303	NR	ND	ND	14.8	14.8	NR	12.7	ND	4.7	8.7	50
GW-02	5630	2950	1690	3423	NR	ND	ND	ND	ND	NR	2.3	ND	ND	2.3	50
GW-04	5750	7180	22000	11643	NR	ND	ND	ND	ND	NR	2	ND	5.8	3.9	50
GW-07	923	1590	1960	1491	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	50
GW-10	30500	9490	3700	14563	NR	ND	ND	ND	ND	NR	15.6	9.5	ND	12.6	50
GW-23	9390	2490	3340	5073	NR	ND	ND	ND	ND.	NR	2.2	ND	ND	2.2	50
GW-26	21700	2170	7280	10383	NR	ND	ND	ND	ND	NR	9.9	ND	2.6	6.3	50
GW-28	33500	13200	31300	26000	NR	ND	ND	14.6	14.6	NR	11.8	6.5	6.9	8.4	50
GW-11	476	ND	ND	476	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	50
GW-24	ND	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	50
GW-30	272	111	53	145	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	50

			ALUMINI	JM				ANTIM	ONY				ARSEN	IC	
LOCATION	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL
GW-01	ND	ND	ND	ND	NR	ND	ND	12.2	12.2	NR	ND	ND	ND	ND	50
GW-02	ND	ND	ND	ND	NR	29.3	ND	ND	29.3	NR	ND	ND	ND	ND	50
GW-04	ND	ND	ND	ND	NR	ND	ND	ND	ND	ŇR	ND	ND	ND	ND	50
GW-07	ND	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	50
GW-10	ND	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	50
GW-23	ND	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	50
GW-26	ND	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	50
GW-28	ND	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	50
GW-11	ND	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	2.2	2.2	50
GW-24	ND	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	50
GW-30	ND	ND	ND	ND	NR	29.5	ND	ND	29.5	NR	ND	ND	ND	ND	50

•								BERYL	IIIM				CADMI	JM	
			BARIUM						AVG	MCL	2/92	5/92	8/92	AVG	MCL
OCATION	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92		NR	14.2	ND	ND	14.2	
SW-01	707.0	64.7	149.0	306.9	1000	3.3	ND	1.6	2.5	ALCOHOL STATE	virusionis 199900	ND	ND	ND	
	147.0	110.0	40.7	99.2	1000	1.3	ND	1.2	1.3	NR	ND	86000 - 20075		5.4	96).
3W-02	F-12. 1997	159.0	286.0	186.3	1000	1.3	1.3	1.8	1.5	NR	5.4	ND	ND	consequence of the factor	
3W-04	114.0	Service of the Control	58.2	71.2	1000	1.1	ND	1.1	1.1	NR	ND	ND	ND	ND	
3W-07	68.4	87.0	\$486.00		1000	2.3	1.4	1.2	1.6	NR	8.2	ND	ND	8.2	9654555 6 665
GW-10	724.0	382.0	108.0	404.7	over at a 1986	1.6	ND	1.2	1.4	NR	6.0	ND	ND	6.0	
GW-23	269.0	89.5	67.4	142.0	1000	\$113901 54401	Garatter 2 284	1.3	26.346.340 HV 14.00	NR	7.0	ND	ND	7.0	
GW-26	585.0	108.0	199.0	297.3	1000	2.1	1.1	waterseen een 1999	2.1	NR	9.6	ND	ND	9.6	
GW-28	315.0	201.0	308.0	274.7	1000	2.8	1.2	2.3	4,1					515000 HHAC WAS HAR	gadar Macanasa
C (. na vona antabbbbb	asaooonioonioisisi <u>2</u> 86	200.000000000 <u>2</u> 00 <u>2</u> 20	NR	N.A.	ND	ND	ND	
A	88.8	26.2	ND	57.5	1000	1.3	ND	1.3	46.56.56.66.00mmmmmmmmmm		ND	99999999 NA DV 0444	ND	ND	(00000000000000000000000000000000000000
GW-11	CONTRACTOR OF THE PROPERTY.		ND	36.5	1000	1.5	ND	1.3	1.4	NR	ND	ND	en anno anno anno anno anno anno anno an	000000000000000000000000000000000000000	
GW-24	49.2	23.8	Armanananasassassassassas	46.3	1000	1.1	ND	0.9	1.0	NR	ND	ND	ND	ND	
GW-30	65.2	40.5	33.1	+0.5	1000			<u> </u>							

pb (parts pe	_							BERYLL	ILIM				CADMIL		
		E	BARIUM						AVG	MCL	2/92	5/92	8/92	AVG	MCL
OCATION	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	åtditte permisses	NR	ND	ND	ND	ND	5
W-01	53.6	21.5	ND	37.6	1000	1.3	ND	1.0	1.2	NR	ND	ND	ND	ND	ŧ
W-02	51.0	28.0	ND	39.5	1000	1.1	ND	0.4	_0.8 *^0.0	2663040000000000000000000000000000000000	ND	ND	ND	ND	
W-04	46.4	21.7	ND	34.1	1000	0.9	ND	0.7	* 0.8	NR NR	ND	ND	ND	ND	
W-07	46.6	18.1	ND	32.4	1000	1.1	ND	0.8	1.0	NR	ND	ND	ND	ND	eogeanann
3W-10	47.6	24.7	ND	36.2	1000	1.0	1.0	0.8	0.9	NR	ND	ND	ND	ND	
3W-23	49.4	25.1	ND	37.3	1000	1.2	ND	0.8	1.0	NR	ND	ND	ND	ND	9000000000
3W-26	55.5	26.0	ND	40.8	1000	1.1	ND	0.8	1.0	NR	ND	ND	ND	ND	
3W-28	57.2	30.6	10.2	32.7	1000	1.3	ND	1.0	1.2	NR	NU	n.e			
5W-20				i de la companya de		1		,			ND	ND	ND	ND	
3W-11	54.1	22.5	ND	38.3	1000	1.1	1.1	0.9	1.0	NR	ND	ND	ND	ND	Proposition of
— 100 for the property of t	49.8	24.3	ND	37.1	1000	1.1	ND	0.9	1.0	NR	000000000000000000000000000000000000000	ND	ND	ND	
3W-24 3W-30	60.1	40.0	20.2	40.1	1000	0.9	ND	0.5	0.7	NR	ND	NU			

			CALCIUM			CHRO	MIUM				COBAL	T			
LOCATION	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL
GW-01	315000	278000	294000	295667	NR	81.6	9.3	19.9	36.9	50	50.7	ND	10.7	30.7	NR
GW-02	218000	208000	220000	215333	NR	13.8	10.8	7.9	10.8	50	ND	ND	ND	ND	NR
GW-04	204000	196000	197000	199000	NR	16.5	18.9	39.6	25.0	50	ND	ND	20.0	20.0	NR
GW07	220000	226000	219000	221667	NR	ND	3.9	6.5	5.2	50	ND	ND	ND	ND	NR
GW-10	238000	225000	233000	232000	NR	41.6	18.1	5.3	21.7	50	36.3	18.0	6.9	20.4	NR
GW-23	250000	232000	231000	237667	NR	15.2	5,6	6.4	9.1	50	ND	ND	ND	ND	NR
GW-26	254000	243000	250000	249000	NR	33.4	6.6	11.5	17.2	50	33.7	ND	12.4	23.1	NR
GW-28	285000	253000	277000	271667	NR	55.1	21.6	49.1	41.9	50	29.8	12.7	29.2	23.9	NR
GW-11	257000	277000	273000	269000	NR	4.9	5.9	3.1	4.6	50	ND	ND	ND	ND	NR
GW-24	288000	205000	288000	260333	NR	5.5	3.1	3.9	4.2	50	ND	ND	ND	ND	NR
GW-30	182000	159000	156000	165667	NR	4.1	5.2	ND	4.7	50	ND	ND	ND	ND	NR

			CALCIUM					CHRON	MUIM				COBAL	T	
LOCATION	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL
GW-01	313000	287000	279000	293000	NR	ND	7.4	4.6	6.0	50	ND	ND	ND	ND	NR
GW-02	234000	208000	204000	215333	NR	8.5	7.1	6.6	7,4	50	ND	ND	ND	ND	NR
GW-04	207000	194000	183000	194667	NR	6.1	9.2	5.1	6.8	50	ND	ND	ND	ND	NR
GW-07	238000	204000	210000	217333	NR	ND	3.3	ND	3.3	50	ND	ND	ND	ND	NR
GW-10	227000	226000	221000	224667	NR	ND	ND	ND	ND	50	ND	ND	ND	ND	NR
GW-23	273000	239000	232000	248000	NR	ND	ND	ND	ND	50	ND	ND	ND	ND	NR
GW-26	257000	242000	239000	246000	NR	ND	ND	2.1	2.1	50	ND	ND	ND	ND	NR
GW-28	287000	245000	260000	264000	NR	ND	3.7	ND	3.7	50	ND	ND	ND	ND	NR
GW-11	274000	268000	277000	273000	NR	ND	5.9	2.3	4.1	50	ND	ND	ND	ND	NR
GW-24	264000	221000	281000	255333	NR	ND	3.8	4.2	4.0	50	ND	ND	ND	ND	NR
GW-30	188000	162000	153000	167667	NR	ND	3.8	2.5	3.2	50	ND	ND	ND	ND	NA

			COPPE	R				IRON					LEAD		
LOCATION	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL
GW-01	87.1	14.5	20.5	40.7	1000	70700	2070	15000	29257	300	26.8	2.2	2.4	10.5	20
GW-02	7.7	41.5	5.5	18.2	1000	7990	4450	2900	5113	300	2.4	3.4	1.8	2.5	20
GW-04	11.3	23.8	42.7	25.9	1000	8120	8280	35000	17133	300	3.7	7.2	17.7	9.5	20
GW-07	ND	13.3	6.3	9.8	1000	1320	2520	3160	2333	300	ND	1.3	ND	1.3	20
GW-10	85.8	28.8	9.5	41.4	1000	45400	13700	5970	21690	300	17.4	8.7	2.1	9.4	20
GW-23	20.0	16.2	9.5	15.2	1000	11800	3270	4900	6657	300	2.1	1.7	ND	1.9	20
GW-26	58.1	14.1	19.0	30.4	1000	32800	3570	11900	16090	300	17.8	2.8	3.9	8.2	20
GW-28	71.2	60.8	64.4	65.5	1000	46600	17200	46600	36800	300	13.7	11.1	6.6	10.5	20
GW-11	7.3	8.5	3.6	6.5	1000	1110	204	145	486	300	5.1	ND	ND	5.1	20
GW-24	ND	5.4	2.4	3.9	1000	78	106	69	84	300	ND	1.3	ND	1.3	20
GW-30	ND	4.5	2.8	3.7	1000	695	201	208	368	300	1.0	3.6	2.2	2.3	20

		(COPPE	R			IF	RON					LEAD		
LOCATION	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL
GW-01	ND	6.9	ND	6.9	1000	ND	104	ND	104	300	1.0	ND	ND	1.0	20
GW-02	ND	6.5	ND	6.5	1000	ND	68	ND	~ 68	300	ND	1.4	ND	1.4	20
GW-04	ND	6.4	ND	6.4	1000	ND	79	ND	79	300	ND	2.2	ND	2.2	20
GW-07	ND	4.3	ND	4.3	1000	ND	55	ND	55	300	1.3	1.4	ND	1.4	20
GW-10	ND	6.3	ND	6.3	1000	ND	66	ND	66	300	6.0	ND	ND	6.0	20
GW-23	ND	5.3	ND	5.3	1000	ND	64	ND	64	300	ND	1.2	ND	1.2	20
GW-26	ND	5.5	ND	5.5	1000	ND	69	ND	69	300	1.2	ND	ND	1.2	20
GW-28	ND	6.6	ND	6.6	1000	ND	74	ND	74	300	ND	1.5	ND	1.5	20
GW-11	ND	7.4	ND	7.4	1000	ND ND	73	ND	73	300	ND	ND	ND	ND	20
GW-24	ND	5.6	ND	5.6	1000	ND	63	ND	63	300	1.3	1.1	ND	1.2	20
GW-30	ND	ND	ND	ND	1000	ND	43	ND	43	300	ND	1.5	ND	1.5	20

L METALS per billion)

			MAGNESI	JM				MANGAN	ESE				MERCL	JRY	
	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL
11	2000	85100	94000	97033	NR	2090.0	198.0	430.0	906.0	50.0	0.20	ND	ND	0.20	2.00
€	7500	62700	65000	65067	NR	227.0	241.0	90.0	186.0	50.0	ND	ND	ND	ND	2.00
 €	4700	61600	68100	64800	NR	177.0	348.0	687.0	404.0	50.0	ND	0.57	0.30	0.44	2.00
7	r0500	71700	69200	70467	NR	144.0	308.0	256.0	236.0	50.0	ND	ND	ND	ND	2.00
7	18100	68400	68400	71633	NR	4190.0	3540.0	2430.0	3386.7	50.0	0.30	ND	ND	0.30	2.00
7	5700	69600	67300	70867	NR	21000.0	876.0	693.0	7523.0	50.0	0.40	ND	0.40	0.40	2.00
8	30900	71400	75200	75833	NR	2640.0	546.0	1010.0	1398.7	50.0	2.00	0.55	0.60	1.05	2.00
9	7600	82700	93000	91100	NR	1010.0	733.0	1050.0	931,0	50.0	0.20	ND	ND	0.20	2.00
 	9900	79500	81500	76967	NR	140.0	87.8	55.4	94,4	50.0	0.20	ND	ND	0.20	2,00
8	31300	59900	80900	74033	NR	3.4	8.3	9.4	7.0	50.0	0.20	ND	ND	0.20	2.00
	0000	42900	42700	45200	NR	94.4	34.9	19.7	49.7	50.0	ND	ND	ND	ND	2.00

G I	ICL
3.2	10.0
'.3	10.0
1.6	10.0
1.2	10.0
1.3	10.0
1.2	10.0
2.1	10.0
'.7	10.0
1.5	10.0
1.0	10.0
.8	10.0

DLVED METALS per billion)

			MAGNESI	JM				MANGANE	SE			MERCURY				
	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL	
	93900	86700	85500	88700	NR	ND	8.0	ND	8.0	50.0	ND	ND	ND	ND	2.00	
	69200	61900	58600	63233	NR	DN	7,2	0.9	4,1	50.0	ND	ND	ND	ND	2.00	
	62800	58900	56400	59367	NR	ND	11.3	ND	11.3	50.0	0.20	ND	ND	0.20	2.00	
	73500	64300	65400	67733	NR	9.3	33.7	26.4	23.1	50.0	ND	ND	ND	ND	2,00	
	64600	64900	64100	64533	NR	2130.0	2010.0	1950.0	2030.0	50.0	ND	ND	ND	ND	2.00	
	77800	70800	67300	71967	NR	36.7	130.0	290.0	152.2	50.0	ND	ND	0.30	0.30	2.00	
	75800	70200	69500	71833	NR	12.9	19.4	10.9	14.4	50.0	0.30	0.22	1.10	0.54	2.00	
	86200	74300	76500	79000	NR	2,6	14,8	ND	8.7	50.0	0.20	ND	0.40	0.30	2.00	
	73400	77100	78200	76233	NR	6.8	9.6	2.3	6.2	50.0	ND	ND	ND	ND	2,00	
000000	75300	63900	80900	73367	NR	ND	7.4	ND	7.4	50.0	ND	ND	0.30	0.30	2.00	
	50000	43500	43000	45500	NR	ND	7.8	0.9	4.4	50.0	0.20	ND	ND	0.20	2.00	

3 1	ICL
1.1	10.0
.9	10.0
.3	10.0
.8	10,0
.9	10.0
.5	10,0
.4	10.0
.4	10.0
.4	10,0
.1	10.0
.8	10.0

			SILVEF	}				SODIUM			THALLIUM					
LOCATION	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL	
GW-01	ND	ND	ND	ND	50.0	163000	143000	155000	153667	NR	ND	ND	ND	ND	NR	
GW-02	ND	ND	ND	ND	50.0	115000	108000	119000	114000	NR	ND	ND	ND	ND	NR	
GW-04	ND	ND	ND	ND	50.0	128000	118000	125000	123667	NR	ND	ND	ND	ND	NR	
GW07	ND	ND	ND	ND	50.0	173000	163000	170000	168667	NR	ND	ND	DN	ND	NR	
GW-10	ND	ND	ND	ND	50.0	147000	133000	134000	138000	NR	ND	ND	ND	ND	NR	
GW-23	ND	ND	ND	ND	50.0	137000	132000	128000	132333	NR	ND	ND	ND	ND	NR	
GW-26	ND	ND	ND	ND	50.0	151000	142000	150000	147667	NR	ND	ND	ND	ND	NR	
GW-28	ND	ND	ND	ND	50.0	151000	141000	143000	145000	NR	ND	ND	ND	ND	NR	
GW-11	ND	ND	ND	ND	50.0	152000	154000	151000	152333	NA	ND	ND	ND	ND	NA	
GW-24	ND	ND	ND	ND	50.0	127000	118000	124000	123000	NR	ND	ND	ND	ND	NR	
GW-30	ND	ND	ND	ND	50.0	92700	85400	78900	85667	NR	ND	ND	ND	ND	NR	

			SILVER					SODIUM					THALLI	UM	
LOCATION	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL	2/92	5/92	8/92	AVG	MCL
GW-01	ND	ND	ND	ND	50.0	163000	146000	146000	151667	NR	ND	ND	ND	ND	NR
GW-02	ND	ND	ND	ND	50.0	120000	109000	113000	174000	NR	ND	ND	ND	ND	NR
GW-04	ND	ND	ND	ND	50.0	130000	120000	121000	123667	NR	ND	ND	ND	ND	NR
GW-07	ND	ND	ND	ND	50.0	176000	148000	159000	161000	NA	ND	ND	ND	ND	NA
GW-10	ND	ND	ND	ND	50.0	137000	132000	127000	132000	NR	ND	ND	ND	ND	NR
GW-23	ND	ND	ND	ND	50.0	136000	138000	131000	135000	NR	ND	ND	ND	ND	NA
GW-26	ND	ND	ND	ND	50.0	156000	142000	142000	146667	NR	ND	ND	ND	ND	NR
GW-28	ND	ND	ND	ND	50.0	155000	140000	138000	144333	PIN	ND	ND	ND	ND	NR
GW-11	ND	ND	ND	ND	50.0	157000	150000	137000	148000	NR	ND	ND	ND	ND	NR
GW-24	ND	ND	ND	ND	50.0	134000	125000	124000	127667	NR	ND	ND	ND	ND	NR
GW-30	ND	ND	ND	ND	50.0	98500	86300	79900	88233	NR	ND	ND	ND	ND	NA

		V	ANADIUM							
LOCATION	2/92	5/92	8/92	AVG	MCL			INC		
GW-01	126.0	11.2	30.3		1 T T T T T T T T T T T T T T T T T T T	2/92	5/92	8/92	AVG	MCL
GW-02	16.8	12.4	7.6	55.8	NR	206.0	19.7	40.9	88.9	5000
GW-04	16.8	26.0	of the second second	12.3	NR	25.8	51.6	12.1	29.8	5000
GW-07	ND	SPARESTRACT - 1 44-54-66	60.3	34.4	NR	34.4	65.8	111.0	70.4	5000
GW-10	84.4	8.5	8.2	8.4	NR	25.8	20.4	12.1	19.4	5000
GW-23	90000-000 North Recognition and a	39.7	12.3	45.5	NR	189.0	74.1	22.8	95.3	Anterwegger -
GW-26	37.0	10.8	11.4	19.7	NR	51.6	30.3	16.0	20000664564 and the construction	5000
A CONTRACTOR OF THE PARTY OF TH	60.3	10.7	22.6	31.2	NR	103.0	23.8		32.6	5000
GW-28	94.2	50.0	88.9	77.7	NR	155.0	Michigan Committee Committee	41.5	56.1	5000
	200000000000000000000000000000000000000						101.0	133.0	129.7	5000
3W-11	ND	ND	4.7	4.7	NR	909.6		900000000000000000000000000000000000000	•	
GW-24	ND	ND	3.9	3.9	asassassassassassassassassassassassassa	328.0	82.3	23.7	144.7	5000
3W-30	DN	ND	3.9	M6000000000000000000000000000000000000	NR	ND	24.7	ND	24.7	5000
			<u> </u>	3.9	NR	17.2	11.7	17.2	15.4	5000

WDI DISSOLVED METALS ppb (parts per billion)

	5000 to 1000	V	ANADIUM			ZINC							
LOCATION	2/92	5/92	8/92	AVG	MCL T	0/00							
GW-01	ND	ND	4.2	4.2	NR	2/92	5/92	8/92	AVG	MCL			
GW-02	ND	ND	3.9	3.9	randaria de la compania de la compaña de	15.4	6.1	ND	10.8	5000			
GW-04	ND	ND	2.2		NR	30.7	19.6	DN	25.2	5000			
GW-07	ND	ND	3.6	2.2	NR	15.4	237.0	ND	126.2	5000			
GW-10	ND	ND	enversebergeren 14 mil 1965berger	3.6	NR	ND	7.4	ND	7,4	5000			
3W-23	ND	ND	2.5	2.5	NR	15.4	8.6	17.2	13.7	5000			
GW-26	ND	ND ND	3.2	3.2	NR	23.1	12.1	ND	17.6	5000			
3W-28	ND	000000000000000000000000000000000000000	3.1	3.1	NR	30.7	10.7	ND	20.7	5000			
	ITU	ND	2.8	2.8	NR	15.4	22.5	ND	19.0	5000			
3W-11	. No		200.0000000000000000000000000000000000						13.0	- 5000			
SW-24	ND	ND	4.5	4.5	NR	184.0	62.6	8.3	DE A				
Control Control Control Control Control	ND	ND	4.3	4.3	NR	15.4	19.5		85.0	5000			
W-30	ND	ND	3.9	3.9	NR	ND	8.7	ND 11.5	17.5 10.1	5000 5000			

Table 5.2

APPENIX A GRAPHS - TOTAL AND DISSOLVED METALS

WASTE DISPOSAL, INCORPORATED

DISSOLVED ALUMINUM NOT DETECTED

A-2

A-4

DISSOLVED CADMIUM NOT DETECTED

DISSOLVED COBALT NOT DETECTED

A-15

A-16

28

30

DEEP WELLS

MCL

10

SHALLOW WELLS

23

3 2

A-18

A-21

APPENDIX B DATA VALIDATION REPORTS - FEBRUARY

Santa-consecução de la compressiva de consecuencia de consecue

ICF TECHNOLOGY INCORPORATED

APR 2 0 1992

MEMORANDUM

DATE:

April 16, 1992

SUBJECT:

Review of Analytical Data

FROM:

Carolyn Studeny

ESAT Senior Organic Data Reviewer

ICF Technology, Inc.

THROUGH:

Jacob Silva Environmental Scientist

Quality Assurance Management Section

Environmental Services Branch, OPM (P-3-2)

TO:

Kay Lawrence

Remedial Project Manager

Enforcement Programs Section (H-7-2)

Attached are comments resulting from Region 9 review of the following analytical data:

SITE:

Waste Disposal, Inc.

EPA SITE ID NO:

C1

CASE/SAS NO.:

LV2S27 Memo #1

SDG NO.:

920228

LABORATORY:

Region IX, Las Vegas

ANALYSIS:

RAS Volatiles

SAMPLE NO.:

18 Water Samples "In Case Summary"

COLLECTION DATE:

February 11 through 13, 1992

REVIEWER:

Ian Jensen

ESAT/ICF Technology, Inc.

TELEPHONE NUMBER:

(415) 882-3187

If there are any questions, please contact the reviewer.

Attachment

TPO: []For Action

[X]FYI

cc: Brenda Bettencourt

ESATQA9A-5950/ILV2S271.RPT

Data Validation Report

Case No.: LV2S27 Memo #1

Site: Waste Disposal, Inc. Laboratory: Region IX, Las Vegas

Reviewer: Ian Jensen, ESAT/ICF Technology, Inc.

Date: April 16, 1992

I. <u>Case Summary</u>

SAMPLE INFORMATION:

VOA Sample Numbers: 920201, 920202, 920204, 920207, 920209,

920210, 920211, 920212, 920217, 920223, 920224, 920226, 920228, 920230 and 920232

through 920235

Concentration and Matrix: Low Level Water

Analysis: RAS Volatiles

SOW: 3/90

Collection Date: February 11 through 13, 1992 Sample Receipt Date: February 13 and 14, 1992

Analysis Date: February 14 through 19, 1992

FIELD QC:

Trip Blanks (TB): None Field Blanks (FB): 920235

Equipment Blanks (EB): 920232 and 920233

Background Samples (BG): None

Field Duplicates (D1): 920201 and 920212

(D2): 920207 and 920217

METHOD BLANKS AND ASSOCIATED SAMPLES:

VBLK1: 920201, 920202, 920204, 920228, 920230 and

920232

VBLK2: 920207, 920209, 920210, 920211, 920212,

920217, 920223, 920224, 920226, 920226-MS and

920226-DS

VBLK3: 920233, 920234 and 920235

TABLES:

1A: Analytical Results with Qualifications

1B: Data Qualifiers

1C: Tentatively Identified Compounds

2: Sample Quantitation Limits of Target Compound

List (TCL) Analytes

ADDITIONAL COMMENTS:

This report was prepared according to the EPA draft document, "National Functional Guidelines for Organic Data Review," December, 1990. (6/91 Revision)

MS - Matrix Spike; DS - Duplicate Spike ESATQA9A-5950/ILV2S271.RPT

II. Validation Summary

. A	VOA cceptable	-	BNA Acceptable	=	PES Acceptable	-
HOLDING TIMES	[Y]	[C]	[]	[]	[]	[]
GC/MS TUNE/GC PERFORMANC	E [Y]	ii	ÌÌ	ίί	[]	ĺĺ
CALIBRATIONS	(Y)	ij	į į	į į	[]	ij
FIELD QC	[N]	[B]	()	įį	()	ίi
LABORATORY BLANKS	[Y]	[]	ĺÌ	[]	[]	[]
SURROGATES	[Y]	[]	įį	[]	[]	[]
MATRIX SPIKE/DUPLICATES	[Y]	()	()	[]	()	[]
INTERNAL STANDARDS	[Y]	[]	[]	[]	ĺ	ĺĺ
COMPOUND IDENTIFICATION	[Y]	ĺÌ	ĺÌ	[]	[]	[]
COMPOUND QUANTITATION	[Y]	[A]	įj	[]	()	[]
SYSTEM PERFORMANCE	[Y]	[D]	ΪÌ	ίi	ĺ	ĺĺ

N/A = Not Applicable

III. Validity and Comments

- A. The results reported in Table 1A for the following analytes are considered as estimates (J) and usable for limited purposes only:
 - All results below the Contract Required Quantitation Limits (denoted with an "L" qualifier)

Results below the Contract Required Quantitation Limits (CRQL) are considered to be qualitatively acceptable but quantitatively unreliable due to the uncertainty in analytical precision near the limit of detection.

- B. Due to field blank contamination problems, the results reported in Table 1A for the following analytes are considered as estimates (J) and usable for limited purposes only:
 - Chloroform in sample numbers 920207 and 920217

Chloroform was found in equipment blanks 920232 and 920233 and field blank 920235 at concentrations of 37 ug/L, 34 ug/L and 1 ug/L, respectively. The results for the samples listed above are considered as non-detected and estimated (U,J) according to the blank qualification rules.

- C. The 40 CFR 136 technical holding time was not exceeded for any of the samples analyzed.
- D. All other results are considered valid and usable for all purposes. All quality control criteria have been met and are considered acceptable.

Analysis Type: Low Level Water Samples for

RAS Volatiles

TABLE 1A*

Case No.: LV2S27 Memo #1

Site: Waste Disposal, Inc.

Lab.: Region IX, Las Vegas

Reviewer: Ian Jensen, ESAT/ICF Technology, Inc.

Date: April 16, 1992

Concentration in ug/L

Sample Location	ľ				ŀ		İ				
Sample I.D.	920201	. D1	92020	2	920204		920207	D2	920209	920210	920211
Compound - Volatiles	Result	Val Com	Result	Val Com	Result V	/al Con	Result	Val Com	Result Val	Com Result Val Con	n Result Val Co
Chloroform	10 U		10 U		10 U		10 U	J B	10 U	10 U	10 U
Trichloroethene	ia u		10 U	1 1 3	10 U		10 U		10 U	10 U	10 U
Tetrachioroethene	10 U		10 U		10 U		10 U		10 U	10 U	10 U
Toluene	10 U		10 U	1 1	10 U		10 U		10 U	10 0	10 U
Ethylbenzene	10 U		10 U		10 U		10 U		4 L J A		10 U
Xylene (total)	10 U		10 U		10 U		10 U		18	to U	10 U
Sample Location											
Sample I.D.	920212	D1	920217	D2	920223		920224	l	920226	920228	920230
Compound - Volatiles	Result	Val Com	Result	Val Com	Result V	al Com	Result	Val Com	Result Val C	om Result Val Com	Result Val Con
Chloroform	10 U		10 U	J B	10 U		10 U		10 U	10 U	10 U
Prichloroethene	10 U		10 U	1. 1	10 U		10 U	•	8 L J A	10 U	10 U
Tetrachloroethene	10 U		10 U		10 U		2 L	JA	10 U	10 U	10 U
l'oluene	to u		10 U		10 U		10 U		10 U	10 U	10 U
Ethylbenzene	10 U		10 U		10 U	~[****** <u>F</u>	10 U		10 U	10 U	10 U

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

Xylene (total)

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank

BG-Background Sample

^{*}The other requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Analysis Type: Low Level Water Samples for

RAS Volatiles

ANALYTICAL RESULTS TABLE 1A*

Case No.: LV2S27 Memo #1

Site:

Waste Disposal, Inc.

Lab.:

Region IX, Las Vegas

Reviewer: Ian Jensen, ESAT/ICF Technology, Inc.

Date:

April 16, 1992

Concentration in ug/L

Sample Location Sample I.D.	920232	EB	920233	Е	В	92023	4		920235	F	В	Method VBL		ank	Method VBL		ank	Method VBLK	
Compound - Volatiles	Result	Val Com	Result	Val	Com	Result	Va	Сош	Result	Va	Com	Result	Va	Соп	Result	Val	Com	Result	Val Cor
Chloroform	37		34			10 U			1 L	J	Α	10 U		\Box	10 U			10 U	
Trichlorocthene	10 U		10 U	100		. 10 U		\$1000 CS	10 U			10 U	1		10 U			10 U	
Tetrachloroethene	10 U		10 U		1 1	10 U			10 U	l		10 U		1 1	10 U			10 U	
Toluene	10 U		10 U			2 L	1	A	10 U			10 U			10 U			10 U	
Ethylbenzene	10 U	111	10 U			10 U			10 U]		10 U			10 U			10 U	
Xylene (total)	10 U		10 U			19 U			10 U			10 U			10 U			10 U	
			3																

Sample Location Sample I.D.	CRQL										-			,							
Compound - Volatiles	Result	Val	Соп	Result	Va	Com	Result	Val	Сош	Result	Val	Com	Result	Val	Com	Result	Val C	om	Result	Val	Com
Chloroform Trichloroethene Tetrachloroethene	10 10 10				1:3						*										
Toluene Ethylbenzene	10 10																	1		- 1	- 1
Xylene (total)		\$300 A				1 1		1	1		' I		Ī		1						
															4						

^{*}The other requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank

BG-Background Sample

TABLE 1B DATA QUALIFIERS

NO QUALIFIERS indicates that the data are acceptable both qualitatively and quantitatively.

- U Indicates that the compound is not detected above the concentration listed.
- L Indicates results which fall below the Contract Required Quantitation Limit. Results are considered estimates and usable for limited purposes.
- J Results are estimated and the data are valid for <u>limited</u> purposes. The results are qualitatively acceptable.
- N Presumptive evidence of the presence of the material. The compound identification is considered to be tentative. The data are usable for limited purposes.
- R Results are rejected and data are invalid for all purposes.

TABLE 1C

Detected Tentatively Identified Compounds (TICs)

Case No.:

LV2S27 Memo #1

Site: Laboratory: Waste Disposal, Inc. Region IX, Las Vegas

Reviewer:

Ian Jensen

ESAT/ICF Technology, Inc.

Date:

April 16, 1992

Sample <u>Number</u> 920201	<u>Compound</u> None Found	Fraction VOA	Retention Time, min.	Concentration (ug/L)	Rating ^a <u>(Remarks)</u>
920202	None Found	VOA			
920204	None Found	VOA			
920207	None Found	VOA	•		
920209	None Found	VOA			
920210	None Found	VOA			
920211	None Found	VOA			
920212	None Found	VOA			
920217	None Found	VOA			
920223	None Found	VOA			
920224	Unknown hydrocarbon Unknown hydrocarbon	VOA VOA	4.75 6.55	8 J 35 J	
920226	None Found	VOA			
920228	None Found	VOA			
920230	None Found	VOA			
920232	Unknown hydrocarbon	VOA	5.27	14 J	Α
920233	Unknown hydrocarbon	VOA	5.23	28 J	A
920234	None Found	VOA			
920235	None Found	VOA			

J (estimated): Value is considered usable for limited purposes.

^{*}Rating codes--probability that identification is correct:

A - High

B - Moderate

· TABLE 2 Sample Quantitation Limits

Case No.: LV2S27 Memo #1

Site: Waste Disposal, Inc. Laboratory: Region IX, Las Vegas

Reviewer: Ian Jensen

ESAT/ICF Technology, Inc.

Date: April 16, 1992

Volatile Compounds	Units, ug/L		Q	<u>C</u>
Chloromethane	10			
Bromomethane	10			
Vinyl chloride	10			
Chloroethane	10			7
Methylene chloride	10	4		
Acetone	10			
Carbon disulfide	10			
1,1-Dichloroethene	10			
1,1-Dichloroethane	10			
1,2-Dichloroethene (total	.) 10			
Chloroform	10			
1,2-Dichloroethane	10			
2-Butanone	10			
1,1,1-Trichloroethane	10			
Carbon tetrachloride	10			
Bromodichloromethane	10			
1,2-Dichloropropane	10			
1,1,2,2-Tetrachloroethane	e 10			
trans-1,3-Dichloropropene	e 10			
Trichloroethene	10			
Dibromochloromethane	10			
1,1,2-Trichloroethane	10			
Benzene	10			
cis-1,3-Dichloropropene	10			
Bromoform `	10			
2-Hexanone	10			
4-Methyl-2-pentanone	10			
Tetrachloroethene	10			
Toluene	10			
Chlorobenzene	10			
Ethylbenzene	10			
Styrene	10			•
Total Xylenes	10			

Q - Qualifier

C - Comment

TABLE 2 (cont'd)

To calculate the sample quantitation limits, multiply CRQL by the following factors:

Sample No.	<u>Volatiles</u>
920201	1.00
920202	1.00
920204	1.00
920207	1.00
920209	1.00
920210	1.00
920211	1.00
920212	1.00
920217	1.00
920223	1.00
920224	1.00
920226	1.00
920228	1.00
920230	1.00
920232	1.00
920233	1.00
920234	1.00
920235	1.00
Method Blanks	1.00

TPO: [] ACTION [X] FYI ORGANIC REGIONAL	DATA_ASSE	SSMENT		Region <u>IX</u>
CASE NO. LV2S27 Memo #1 LABO	RATORY	Region	IX, Las	Vegas
SDG NO. 920228 DATA	USER			
SOW REVI	EW COMPLE	ETION DAT	E <u>Apri</u>	.1 16, 1992
NO. OF SAMPLES 18 WATER	SOIL	-	OTHER	
REVIEWER [] ESD [X] ESAT [] OTHER,	CONTRACT	r/contrac	TOR	
	VOA	BNA	PEST	OTHER
1. HOLDING TIMES	0			
2. GC-MS TUNE/GC PERFORMANCE	_0_	-		
3. INITIAL CALIBRATIONS	0	·		
4. CONTINUING CALIBRATIONS	0			
5. FIELD QC	<u> </u>			<u> </u>
6. LABORATORY BLANKS	0			•
7. SURROGATES	0			
8. MATRIX SPIKE/DUPLICATES	0			
9. REGIONAL QC ("F" - not applicable)	<u> </u>			
10. INTERNAL STANDARDS	0			.*
11. COMPOUND IDENTIFICATION	0			
12. COMPOUND QUANTITATION	<u> </u>			
13. SYSTEM PERFORMANCE	0			
14. OVERALL ASSESSMENT	<u>x</u>			
 0 - No problems or minor problems that X - No more than about 5% of the data por unusable. M - More than about 5% of the data point Z - More than about 5% of the data point 	oints are ats are q	e qualifi ualified	led as ei as estir	ither estimated
TPO ACTION ITEMS:	.			
AREAS OF CONCERN:				

ICF TECHNOLOGY INCORPORATED

MAY 0 1 1992

MEMORANDUM

DATE:

April 28, 1992

SUBJECT:

Review of Analytical Data

FROM:

Carolyn Studeny

ESAT Senior Organic Data Reviewer

ICF Technology, Inc.

THROUGH:

Jacob Silva

Environmental Scientist

Quality Assurance Management Section

Environmental Services Branch, OPM (P-3-2)

TO:

Kay Lawrence

Remedial Project Manager

Enforcement Programs Section (H-7-2)

Attached are comments resulting from Region 9 review of the following analytical data:

SITE:

Waste Disposal, Inc.

EPA SITE ID NO:

Cl

CASE/SAS NO.:

LV2S27 Memo #3

SDG NO.:

920228

LABORATORY: ANALYSIS:

Region IX, Las Vegas RAS Semivolatiles

SAMPLE NO.:

18 Water Samples (In Case Summary)

COLLECTION DATE:

February 11 through 13, 1992

REVIEWER:

Ian Jensen

ESAT/ICF Technology, Inc.

TELEPHONE NUMBER:

(415) 882-3187

If there are any questions, please contact the reviewer.

Attachment

TPO: []For Action

[X]FYI

cc: Brenda Bettencourt

Data Validation Report

Case No.: LV2S27 Memo #3

Site: Waste Disposal, Inc. Laboratory: Region IX, Las Vegas

Reviewer: Ian Jensen, ESAT/ICF Technology, Inc.

Date: April 28, 1992

I. Case Summary

SAMPLE INFORMATION:

BNA Sample Numbers: 920201, 920202, 920204, 920207, 920209

through 920212, 920217, 920223, 920224,

920226, 920228, 920230, 920232 through 920235

Concentration and Matrix: Low Level Water

Analysis: RAS Semivolatiles

SOW: 3/90

Collection Date: February 11 through 13, 1992 Sample Receipt Date: February 13 and 14, 1992 Extraction Date: February 13 and 18, 1992

Analysis Date: February 28 through March 10, 1992

FIELD QC:

Trip Blanks (TB): None Field Blanks (FB): 920235

Equipment Blanks (EB): 920232 and 920233

Background Samples (BG): None

Field Duplicates (D1): 920201 and 920212

(D2): 920207 and 920217

METHOD BLANKS AND ASSOCIATED SAMPLES:

WBLK(RB022801): 920228, 920230 and 920232

WBLK(RB022802): 920201, 920202, 920209, 920210, 920217,

920233, 920234 and 920235

WBLK(RB030602): 920204, 920211, 920212, 920223 and 920224 WBLK(RB031001): 920207, 920226, 920226MS and 920226MSD

TABLES:

1A: Analytical Results with Qualifications

1B: Data Qualifiers

1C: Tentatively Identified Compounds

B-12

2: Sample Quantitation Limits of Target Compound

List (TCL) Analytes

ADDITIONAL COMMENTS:

This report was prepared according to the EPA draft document, "National Functional Guidelines for Organic Data Review," December, 1990 (6/91 Revision).

MS - Matrix Spike; MSD - Matrix Spike Duplicate

ESATQA9A-6010/ILV2S273.RPT

II. Validation Summary

. Ас	VOA ceptable,		BNA Acceptable	_	PEST Acceptable/Commen				
HOLDING TIMES	[]	[]	[Y]	[E]	[]	[]			
GC/MS TUNE/GC PERFORMANCE	E []		[Y]	[]	[]				
CALIBRATIONS	[]	[]	[N]	[B,C]	[]	[]			
FIELD QC		[]	[Y]	[]	[]	ĺĺ			
LABORATORY BLANKS	ĺ	ĹĴ	[Y]	[A]	ĹĴ	ĺ			
SURROGATES	ĺĺ	[]	[Y]	[]	ĺĺ	ίi			
MATRIX SPIKE/DUPLICATES	[]	[]	[N]	[D]	()	ĺĺ			
INTERNAL STANDARDS	[]	[]	[Y]	()	ĺ	[]			
COMPOUND IDENTIFICATION	[]	ĺÌ	[Y]	()	ĺ	[]			
COMPOUND QUANTITATION	[]	[]	[Y]	[]	ĪĪ	[]			
SYSTEM PERFORMANCE	()	()	[Y]	[F]	ij	ĺ			

N/A - Not Applicable

III. Validity and Comments

- A. Due to laboratory blank contamination problems, the following analytes are considered as estimates (J) and usable for limited purposes only (see Table 1A):
 - Di-n-butylphthalate in sample number 920224
 - bis(2-Ethylhexyl)phthalate in sample numbers 920202, 920204, 920207, 920209, 920211, 920217, 920223, 920224, 920226, 920228, 920230, 920233 and 920234

bis(2-Ethylhexyl)phthalate was found in method blanks WBLK(RB022802), WBLK(RB030602) and WBLK(RB031001) at concentrations of 19 ug/L, 19 ug/L and 17 ug/L, respectively. Although not detected in any of the laboratory method blanks, di-n-butylphthalate has been historically found as a common laboratory contaminant. It is the opinion of the reviewer that the di-n-butylphthalate found in the samples listed above are artifacts.

The results for the samples listed above are considered as nondetected and estimated (U,J) and quantitation limits have been increased where appropriate, according to the blank qualification rules.

- B. Due to low Relative Response Factors (RRFs) in the Initial and Continuing Calibrations, the quantitation limits for the following analytes are considered as estimates (J) and usable for limited purposes only (see Table 2):
 - 2,4-Dinitrophenol and 4,6-dinitro-2-methylphenol in sample numbers 920204, 920211, 920212, 920223 and 920224 and method blank WBLK(RB030602)

An average Relative Response Factor (RRF) of 0.026 was observed for 2,4-dinitrophenol in the Initial Calibration performed on March 5, 1992. Relative Response Factors of 0.020 and 0.045 were observed

for 2,4-dinitrophenol and 4,6-dinitro-2-methylphenol, respectively, in the Continuing Calibration performed on March 6, 1992. These values were below the 0.05 QC limit.

Since the results for these analytes are non-detected, false negatives may exist.

- C. Due to large percent Relative Standard Deviation (%RSD) in the Initial Calibration, the quantitation limits for the following analytes are considered as estimates (J) and usable for limited purposes only (see Table 2):
 - 2,4-Dinitrophenol and 4,6-dinitro-2-methylphenol in sample numbers 920204, 920211, 920212, 920223 and 920224 and method blank WBLK(RB030602)

Percent Relative Standard Deviations of 47% and 36% were observed for 2,4-dinitrophenol and 4,6-dinitro-2-methylphenol, respectively, in the Initial Calibration performed on March 5, 1992. These values exceed the <30% advisory QC limit.

D. The percent Recovery for the analytes below, in the Matrix Spike and Matrix Spike Duplicate, exceeded the QC limits.

<u>Analyte</u>	MS %Recovery	MSD %Recovery	OC limit
4-Nitrophenol	109%	111%	10-80%
2,4-Dinitrotoluene	107%	106%	24-96%
Pentachlorophenol	124%	110%	9-103%

The effect on the quality of data is not known.

- E. The 40 CFR 136 technical holding times were not exceeded for any of the samples analyzed.
- F. All other results are considered valid and usable for all purposes. All quality control criteria have been met and are considered acceptable.

ANALYTICAL RESULTS TABLE 1A*

Case No.: LV2S27 Memo #03

Site: Waste Disposal, Inc.

Lab.: Region IX, Las Vegas

Reviewer: Ian Jensen, ESAT/ICF Technology, Inc.

Date: April 28, 1992

Analysis Type: Low Level Water Samples

for RAS Semivolatiles

Concentration in ug/L

Sample Location Sample I.D.	92023	12 E	В	92023	3	EB	9202	34		9202	235	P	В	Method WBLK(RB0			Method WBLK(RB0			Method WBLK(RB)		
Compound	Result	Val	Соп	Result	V	Com	Result	V	І Сод	Result	T	/11	Com	Result	V.	Соп	Result	Va	Сош	Result	V,	i Co
DI-n-butylphthalate bis(2-Ethylhexyl)phthalate	10 U			10 U 16 U		A	10 U 10 U		A	10 10				10 U 10 U	******		10 U 19			10 T 19	I	
	·																					
Sample Location Sample I.D.	Method : WBLK(RBO		·]	CRQL							-											
Compound	Result	Val C	от	Result	Val	Сош	Result	Va	Сош	Rosult	V	al C	om	Result	Val	Сот	Rosult	Val	Сош	Result	Val	Co
Di+n+butylphthalate is(2-Ethylhexyl)phthalate	10 U			10 10																		
			.								× × × × × × × × × × × × × × × × × ×	****			***			 				

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank

BG-Background Sample

AWALYTICAL RESULTS TABLE 1A*

Case No.: LV2S27 Memo #03

Site: Waste Disposal, Inc.

Lab.: Region IX, Las Vegas

Reviewer: Ian Jensen, ESAT/ICF Technology, Inc.

Date: April 28, 1992

Analysis Type: Low Level Water Samples

for RAS Semivolatiles

Concentration in ug/L

Sample Location Sample I.D.	9202	201	D1	9202	202		92	020	4	92	02 07	' 1	D2	9202	09		920	210		920	0211	,
Compound	Result	V	Con	Result	V	al Com	Rosult	V	el Con	Result	\Box	Val	Com	Result	V	Com	Result	V	Con	Rosult	Ţv	el Co
Di÷n∸butylphthalate	10	U		10 t			10 1)		10	v			10 U			10 1			10	U	
bis(2-Ethylhexyl)phthalate	10			10 U		A	10 t		A	10		J	A	10 U		A	10 1			10		A
														<u> </u>								
Sample Location	-															1						
Sample I.D.	9202	12	D1	92021	7	D2	9202	23	:	92	0224	4	ĺ	92022	86		9202	28		920	230	
Compound	Result	Val	Соп	Result	٧a	Com	Result	Va	Com	Result		/al	Com	Result	Val	Сол	Result	Va	Com	Result	Va	Cor
Di-n-butylphthalate	10	1		10 U			10 (J			10	U	7	A	10 U	***		- 10 U			10 1	n .	
is(2-Ethylhexyl)phthalate	10			10 U		A	10 U		A	15	U	J ,	A	10 U		A	10 U		A	10 1		A
										•												
	1.	1 1	1			1 1		ł	1 1		- 1	- 1	- 1	1	i	1 1		ı	1 1		ł	1

^{*}The other requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank

BG-Background Sample

TABLE 1B DATA QUALIFIERS

NO QUALIFIERS indicates that the data are acceptable both qualitatively and quantitatively.

- U Indicates that the compound is not detected above the concentration listed.
- L Indicates results which fall below the Contract Required Quantitation Limit. Results are considered estimates and usable for limited purposes.
- J Results are estimated and the data are valid for <u>limited</u> purposes. The results are qualitatively acceptable.
- N Presumptive evidence of the presence of the material. The compound identification is considered to be tentative. The data are usable for limited purposes.
- R Results are rejected and data are invalid for all purposes.

TABLE 1C
Detected Tentatively Identified Compounds (TICs)

Case No.:

LV2S27 Memo #3

Site: Laboratory: Waste Disposal, Inc. Region IX, Las Vegas

Reviewer:

Ian Jensen

ESAT/ICF Technology, Inc.

Date:

April 28, 1992

Sample Number	Compound	Fraction	Retention Time, min.	Concent:	Rating ^a (Remarks)	
920201	Unknown	BNA	32.25	2		
920202	Unknown	BNA	10.95	10	J .	
920204	Unknown	BNA	29.47	5	J	
	Unknown Carbonochloridate	BNA	30.62	. ,4	J	
	cholestenol	BNA	32.55	8	J	В
920207	Unknown	BNA	32.20	3	J	
920209	Substituted benzene	BNA	8.57	10	J	В
	Substituted benzene	BNA	9.10	4	J	В
920210	Unknown	BNA	10.95	10	J	
	Unknown	BNA	13.20	. 8	J	
	Unknown	BNA	14.90	10	J	
	Unknown	BNA	32.25	5	J	
920211	Carbonochloridate		•			
	cholestenol	BNA	32.55	5	J	В
920212	Unknown	BNA	30.60	4	J	
	Carbonochloridate	PATA	22 52	4	J	В
	cholestenol	BNA	32,53	4	J	В
920217	None Found	BNA				
920223	Unknown	BNA	8.47	4		
	Unknown Carbonochloridate	BNA	9.77	20	J	
	cholestenol	BNA	32.53	3	J	В
920224	Unknown	BNA	30.60	2	J	
920226	None Found	BNA				

J (estimated): Value is considered usable for limited purposes. *Rating codes--probability that identification is correct:

A - High

B - Moderate

TABLE 1C (continued)

Sample <u>Number</u>	Compound	Fraction	Retention Time, min.	Concentration (ug/L)	Rating ^a (Remarks)
920228	Unknown Unknown	BNA BNA	8.78 10.95	5 J 9 J	
920230	Unknown	BNA	10.95	6 Ј	
920232	None Found	BNA			
920233	None Found	BNA			
920234	Butoxy ethanol Ethyl hexanoic acid Unknown	BNA BNA BNA	9.35 13.50 18.12	20 J 10 J 5 J	В С
920235	None Found	BNA	•		

J (estimated): Value is considered usable for limited purposes. *Rating codes--probability that identification is correct:

A - High

B - Moderate

TABLE 2
Sample Quantitation Limits

Chase con: LV2S27 Memo #3

Conta Disposal, Inc.

Conta Disposal, I

-\$	fyst of	in plannaunds	Units, ug/L		Q	<u>C</u>
	79-23	weakhylyuchar	10 10			
-		2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	10			
			10			
	-01 (NA)	erebinazana	10	4		
•	•		10			
<u></u> .	3511	1	10			
	•	and the second second				
	35.	oli. Medenipylami	10			
•	·	i ropylami				
			10			
•	and the second s		10			
			10 10			
		•	10			
		•				
		,	10			
			10			
			10			
-		3	10			
			10			
	. 1.	<i>i.</i> .	10			
			10			
		unrdia.				
		- 1. 1. 1. 1	10			
		γ_{i} in ${f old}$	25			
<u>.</u>	- 1, n L	i. A ima	10			
			25 10			
			10			•
		•	25			
			4.5			

TABLE 2 (cont'd)

Semivolatile Compounds	Units. ug/L	Q	<u>C</u>
Acenaphthene	10		
2,4-Dinitrophenol	25	J	B,C
4-Nitrophenol	25		
Dibenzofuran	10		
2,4-Dinitrotoluene	10		
2,6-Dinitrotoluene	10		
Diethylphthalate	10		
4-Chlorophenyl-phenylethe	r 10		
Fluorene	10		
4-Nitroaniline	25		
4,6-Dinitro-2-methylpheno	1 25	J	B,C
N-Nitrosodiphenylamine	10		
4-Bromophenyl-phenylether	10	6	
Hexachlorobenzene	10		
Pentachlorophenol	25		
Phenanthrene	10		
Anthracene	10		
Carbazole	10		
Di-n-butylphthalate	10		
Fluoranthene	10		
Pyrene	10		
Butylbenzylphthalate	10		
3,3'-Dichlorobenzidine	10		
Benzo(a)anthracene	10		
bis(2-Ethylhexyl)phthala	te 10		
Chrysene	10		
Di-n-octyl phthalate	10		
Benzo(b)fluoranthene	10		
Benzo(k)fluoranthene	10		
Benzo(a)pyrene	10		
Indeno(1,2,3-cd)pyrene	10		
Dibenz(a,h)anthracene	10		
Benzo(g,h,i)perylene	10		

Q - Qualifier
C - Comment

TABLE 2 (cont'd)

To calculate the sample quantitation limits, multiply CRQL by the following factors:

Sample No.	<u>Semivolatiles</u>
920201	1.00
920202	1.00
920204	1.00
920207	1.00
920209	1.00
920210	1.00
920211	1.00
920212	1.00
920217	1.00
920223	1.00
920224	1.00
920226	1.00
920228	1.00
920230	1.00
920232	1.00
920233	1.00
920234	1.00
920235	1.00
Method Blanks	1.00

DATA ASSE	SSMENT		Region <u>IX</u>
RATORY	Regio	n IX. La	s Vegas
USER	· · · · · · · · · · · · · · · · · · ·		
EW COMPLE	TION DAT	E <u>Apri</u>	1 28, 1992
SOIL		OTHER	
CONTRACT	CONTRAC	CTOR	
VOA	BNA	PEST	OTHER
	0		
	0		
	<u> </u>		
·	<u> </u>		
	0		
	<u> </u>		-
	0		
	0		-
	F		
	0	-	
	0		
	0		
	0		
	<u>x</u>		
	CONTRACT VOA do not af oints are quits are quits are quits	USER EW COMPLETION DATE SOIL CONTRACT/CONTRACT VOA BNA O X X O X O F O O Y A O O X O O T O A CO T O A CO T O A CO T ### COMPLETION DATEApri ### COMPLETION DATEApri ### CONTRACT/CONTRACTOR ### VOA	

ICF TECHNOLOGY INCORPORATED

MAY 1 8 1992

MEMORANDUM

DATE:

May 13, 1992

SUBJECT:

Review of Analytical Data

FROM:

Carolyn Studeny

ESAT Senior Organic Data Reviewer

ICF Technology, Inc.

THROUGH:

Jacob Silva Environmental Scientist

Quality Assurance Management Section

Environmental Services Branch, OPM (P-3-2)

TO:

Kay Lawrance

Remedial Project Manager

Enforcement Programs Section (H-7-2)

Attached are comments resulting from Region 9 review of the following analytical data:

SITE:

Waste Disposal, Inc.

EPA SITE ID NO:

CASE/SAS NO.:

LV2S27 Memo #02

SDG NO.:

920228

Cl

LABORATORY:

Region IX, Las Vegas RAS Pesticides/PCBs

ANALYSIS:

SAMPLE NO.:

18 Water Samples (See Case Summary)

COLLECTION DATE:

February 12 and 13, 1992

REVIEWER:

Anh Do

ESAT/ICF Technology, Inc.

TELEPHONE NUMBER:

(415) 882-3052

If there are any questions, please contact the reviewer.

Attachment

TPO: []For Action

[X]FYI

Brenda Bettencourt

Data Validation Report

Case No.: LV2S27 Memo #02
Site: Waste Disposal, Inc.
Laboratory: Region IX, Las Vegas

Reviewer: Anh Do, ESAT/ICF Technology, Inc.

Date: May 13, 1992

I. Case Summary

SAMPLE INFORMATION:

PEST Sample Numbers: 920201, 920202, 920204, 920207, 920209,

920210, 920211, 920212, 920217, 920223, 920224, 920226, 920228, 920230, 920232,

920233, 920234 and 920235

Concentration and Matrix: Low Level Water

Analysis: RAS Pesticides/PCBs

SOW: 2/88

Collection Date: February 12 and 13, 1992
Sample Receipt Date: February 13 and 14, 1992
Extraction Date: February 13 and 19, 1992

Analysis Date: March 7 and 8, 1992

FIELD QC:

Trip Blanks (TB): None Field Blanks (FB): 920235

Equipment Blanks (EB): 920232 and 920233

Background Samples (BG): None

Field Duplicates (D1): 920201 and 920212

(D2): 920207 and 920217

METHOD BLANKS AND ASSOCIATED SAMPLES:

PBLK2: 920228, 920230 and 920232

PBLK3: 920201, 920202, 920204, 920207, 920209,

920210, 920211, 920212, 920217, 920223, 920224, 920226, 920233, 920234, 920235,

920226MS and 920226MSD

TABLES:

1A: Analytical Results with Qualifications

1B: Data Qualifiers

2: Sample Quantitation Limits of Target Compound

List (TCL) Analytes

ADDITIONAL COMMENTS:

This report was prepared according to the EPA document "Laboratory Data Validation Functional Guidelines For Evaluating Organic Analyses," April 11, 1985.

II. Validation Summary

4	Accept	V(abl	OA e/Comment	BNA Acceptable	-	PEST Acceptable/Comment		
HOLDING TIMES	(}	[]	[]	[]	[Y]	[B]	
GC/MS TUNE/GC PERFORMAN	CE []	[]	[]	[]	[Y]	[]	
CALIBRATIONS	[]	[]	[]	[]	[N]	[A]	
FIELD QC	1]	[]	[]	[]	[Y]	[]	
LABORATORY BLANKS	[1	[]	[]		[Y]	[]	
SURROGATES	Ī	Ì	ĺ	[]	[]	[Y]	ĺÌ	
MATRIX SPIKE/DUPLICATES	Ĩ	j	ĺÌ	[]	[]	[Y]	ĹĬ	
INTERNAL STANDARDS	ĺ	j	ĺĺ	ĹÌ	ĺ	[N/A]	ĺ	
COMPOUND IDENTIFICATION	ĺ	j	[]	[]	ĺÌ	[Y]		
COMPOUND QUANTITATION	ĺ	1	ĺ	[]	ίİ	[Y]	[]	
SYSTEM PERFORMANCE	Ī	j	ĹĴ	ĹĴ	įj	[Y]	[c]	

N/A - Not Applicable

III. Validity and Comments

- A. A Percent Relative Standard Deviation (%RSD) exceeding the <10% QC limit was observed for 4,4'-DDT in the evaluation check for linearity on the confirmation column in the calibration performed March 7, 1992. It is the opinion of the reviewer that the data are not affected since no target analytes were detected in any of the samples.
- B. The 40 CFR 136 technical holding times were not exceeded for any of the samples analyzed.
- C. All results are considered valid and usable for all purposes. All quality control criteria have been met and are considered acceptable.

B-27

ANALYTICAL RESULTS TABLE 1A*

Case No.: LV2S27 Memo #02

Site: Waste Disposal, Inc. Lab.:

Region IX, Las Vegas

Reviewer: Anh Do, ESAT/ICF Technology, Inc.

Date: May 13, 1992 Analysis Type: Low Level Water Samples for

RAS Pesticides/PCBs

Concentration in ug/L

Sample Location Sample I.D.	92020	1 D1	9202	02	9202	04	92020	7 D2	920209	920210	920211
Compound - Pesticides/PCBs	Result	Val Con	Result	Val Com	Result	Val Com	Result	Val Com	Result Val Con	Result Val Con	Result Val Com
No Pesticides/PCBs Detected	ND		ND		DN		ND .		ND S	ND	ND

Sample Location Sample I.D.	920212	2 1)1	920217	,	D2	9202:	23		9202	24		92022	26		9202	28		9202:	30	
Compound - Pesticides/PCBs	Result	Val	Сош	Result	Va	Сош	Result	Val	Сош	Result	Val	Com	Result	Val	Сол	Result	Va	Com	Result	Val	Сод
No Pesticides/PCBs Detected	ND			ND			ДŊ			ND			ND			ND			DM		
																,					

^{*}The requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

Di, D2, etc.-Field Duplicate Pairs

FR-Field Blank, EB-Equipment Blank, TB-Travel Blank

BG-Background Sample

ANALYTICAL RESULTS TABLE 1A*

Case No.: LV2S27 Memo #02

Site:

Waste Disposal, Inc.

Lab.:

Sample Location

Region IX, Las Vegas

Reviewer: Anh Do, ESAT/ICF Technology, Inc. Date:

March 13, 1992

Analysis Type: Low Level Water Samples for

RAS Pesticides/PCBs

Concentration in ug/L

Sample Location Sample I.D.	92023	2 EB	9202	33 EB	920234		92023	5 PB	PBLK2	PBLK3	
Compound - Pesticides/PCBs	Result	Val Con	n Result	Val Com	Result V	al Com	Result	Val Com	Result Val Con	Result Val Com	Result Val Con
No Pesticides/PCBs Detected	ND		ND		ND		ND .		ND	ND	
							-				
										, , , , , , , , , , , , , , , , , , , ,	

*The requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

D1, D2, etc.-Field Duplicate Pairs FB-Field Blank, EB-Equipment Blank, TB-Travel Blank **BG-Background Sample**

TABLE 1B DATA QUALIFIERS

- indicates that the data are acceptable both qualitatively and by.
- tes that the compound is not detected above the concentration
- tes results which fall below the Contract Required Quantitation Results are considered estimates and usable for limited es.
- are estimated and the data are valid for <u>limited</u> purposes. The as are qualitatively acceptable.
- ptive evidence of the presence of the material. The compound fication is considered to be tentative. The data are usable for <u>d</u> purposes.
- s are rejected and data are invalid for all purposes.

TABLE 2
Sample Quantitation Limits

<u>C</u>

Case No.: LV2S27 Memo #02 Site: Waste Disposal, Inc. Laboratory: Region IX, Las Vegas

Reviewer: Anh Do

ESAT/ICF Technology, Inc.

Date:

May 13, 1992

Pesticides/PCBs	Units, ug/L	Q
alpha-BHC	0.05	
beta-BHC	0.05	
delta-BHC	0.05	
gamma-BHC (Lindane)	0.05	
Heptachlor	0.05	
Aldrin	0.05	A
Heptachlor epoxide	0.05	•
Endosulfan I	. 0.05	
Dieldrin	0.1	
4,4'-DDE	0.1	
Endrin	0.1	
Endosulfan II	0.1	
4,4'-DDD	0.1	
Endosulfan sulfate	0.1	
4,4'-DDT	0.1	
Methoxychlor	0.5	
Endrin ketone	0.1	
alpha-Chlordane	0.5	
gamma-Chlordane	0.5	
Toxaphene	1	
Aroclor-1016	0.5	
Aroclor-1221	0.5	
Aroclor-1232	0.5	
Aroclor-1242	0.5	
Aroclor-1248	0.5	
Aroclor-1254	1	
Aroclor-1260	. 1	

Q - Qualifier C - Comment

To calculate the sample quantitation limits, multiply CRQL by the following factors:

Sample No.	<u>Pesticides</u>
All samples	1.00
Method Blanks	1.00

ASE NO. <u>LV2S27 Memo #02</u>	LABORATORY	Region	IX. Las V	egas
OG NO. <u>920228</u>	DATA USER			·····
OW <u>2/88</u>	REVIEW COMPI	ETION DA	TE <u>May 13</u>	. 199
O. OF SAMPLES 18 WATER	soil		OTHER '-	
EVIEWER [] ESD [X] ESAT []	OTHER, CONTRAC	T/CONTRA	CTOR	
	VOA	BNA	PEST	OTHER
L. HOLDING TIMES			0	
2. GC PERFORMANCE			0	
3. INITIAL CALIBRATIONS			0	
4. CONTINUING CALIBRATIONS			_0_	
5. FIELD BLANKS			0	
6. LABORATORY BLANKS			0	
7. SURROGATES		****	0	
8. MATRIX SPIKE/DUPLICATES			0	
9. REGIONAL QC			F	
10. INTERNAL STANDARDS			F	
11. COMPOUND IDENTIFICATION	-		0_	
12. COMPOUND QUANTITATION		·	0	
13. SYSTEM PERFORMANCE	***************************************			
14. OVERALL ASSESSMENT				
 0 - No problems or minor problems X - No more than about 5% of the or unusable. M - More than about 5% of the date Z - More than about 5% of the date F - Not applicable. TPO ACTION ITEMS: 	data points are of the points are of the points are of	ce qualii qualified qualified	fied as eit d as estima d as unusal	her e

ICF TECHNOLOGY INCORPORATED

MAY 1 4 1992

MEMORANDUM

DATE:

May 5, 1992

SUBJECT:

Review of Analytical Data

FROM:

Margie D. Weiner MDW

ESAT Inorganic Data Reviewer

ICF Technology, Inc.

THROUGH:

Jacob Silva & Auto

Environmental Scientist

Quality Assurance Management Section

Environmental Services Branch, OPM (P-3-2)

TO:

Kay Lawrence

Remedial Project Manager

Enforcement Programs Section (H-6-2)

Attached are comments resulting from Region 9 review of the following analytical data:

SITE:

Waste Disposal, Inc.

EPA SITE ID NO:

C1

CASE/SAS NO.:

LV2S27 Memo #04

SDG NO.:

920228

LABORATORY:

Region IX, Las Vegas

ANALYSIS:

RAS Total Metals

SAMPLE NO.:

18 Water Samples (In Case Summary)

COLLECTION DATE:

February 11, 12 and 13, 1992

REVIEWER:

Roy Diaz

ESAT/ICF Technology, Inc.

TELEPHONE NUMBER:

(415) 882-3057

If there are any questions, please contact the reviewer.

Attachment

TPO: []For Action

[X]FYI

cc: Brenda Bettencourt, Chief, Laboratory Support Section (P-3-1)

ESATQA9A-6240/RLV2S274.RPT

B-33

Data Validation Report

Case No.: LV2S27 Memo #04
Site: - Waste Disposal, Inc.
Laboratory: Region IX, Las Vegas

Reviewer: Roy Diaz, ESAT/ICF Technology, Inc.

Date: May 5, 1992

I. <u>Case Summary</u>

SAMPLE INFORMATION: SAMPLE #: 920201, 920202, 920204, 920207, 920209,

920210, 920211, 920212, 920217, 920223, 920224, 920226, 920228, 920230, 920232,

920233, 920234 and 920235

COLLECTION DATE: February 11, 12 and 13, 1992 SAMPLE RECEIPT DATE: February 13 and 14, 1992

CONCENTRATION & MATRIX: 18 Low concentration ground water samples

FIELD QC: Field Blanks (FB): 920235

Equipment Blanks (EB): 920232 and 920233

Background Samples (BG): None

Duplicates (D1): 920201 and 920212

(D2): 920207 and 920217

LABORATORY QC: Matrix Spike: 920226

Duplicates: 920226

ICP Serial Dilution: 920226

ANALYSIS: RAS Total Metals

Analyte	Sample Preparation and Digestion Date	Analysis <u>Date</u>
ICP Metals	February 20, 1992	February 21, 1992
GFAA: Arsenic Lead Selenium Thallium	February 20, 1992 February 20, 1992 February 20, 1992 February 20, 1992	March 12, 1992 February 27, 1992 March 11, 1992 March 5, 1992
Mercury	February 25, 1992	February 25, 1992

The analytical results with qualifications are listed in Table 1A. The definitions of the data qualifiers used in Table 1A are listed in Table 1B. This report was prepared in accordance with the EPA Contract Laboratory Program Inorganic Statement of Work for March 1990 and the EPA draft document "Laboratory Data Validation Functional Guidelines For Evaluating Inorganic Analyses" (October, 1989).

II. Validation Summary

The data were evaluated based on the following parameters:

Para	<u>neter</u>	<u>Acceptable</u>	Comment
1.	Data Completeness	Yes	
2.	Sample Holding Times	Yes	Н
3.	Calibration	No	E
	a. Initial Calibration Verification		
	b. Continuing Calibration Verification	n	
	c. Calibration Blank		
4.	Blanks	Yes	
	a. Laboratory Preparation Blank		
	b. Field Blank		
5.	ICP Interference Check Sample Analysis	No	F
6.	Laboratory Control Sample Analysis	Yes	
7.	Spiked Sample Analysis	No	В
8.	Laboratory Duplicate Sample Analysis	Yes	
9.	Field Duplicate Sample Analysis	No	G
10.	GFAA QC Analysis	• No	C,D
	a. Duplicate Injections		
	b. Analytical Spikes		
11.	ICP Serial Dilution Analysis	Yes	
12.	Sample Quantitation	Yes	A
13.	Sample Result Verification	Yes	I

III. Validity and Comments

- A. The results reported in Table 1A for the following analytes are considered as estimates (J) and are usable for limited purposes only.
 - All results above the Instrument Detection Limit but below the Contract Required Detection Limit (denoted with an "L" qualifier)

Results above the Instrument Detection Limit (IDL) but below the Contract Required Detection Limit (CRDL) are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.

- B. The following results are considered usable for limited purposes because of accuracy problems. The results are considered as estimates and are flagged "J" in Table 1A.
 - Arsenic in all of the samples

The matrix spike recovery results for arsenic in QC sample number 920226 did not meet the 75-125% criteria for accuracy as listed below. The possible percent bias for arsenic is also presented below.

B-35

Analyte	920226 % Recovery	920226 <u>% Bias</u>
- Arsenic	70.8	-29.2

Results above the IDL are considered quantitatively questionable. The results for arsenic in sample numbers 920201, 920202, 920204, 920210, 920212, 920223, 920226 and 920228 may be biased low. The detection limits reported for arsenic in sample numbers 920207, 920209, 920211, 920217, 920224, 920230, 920232, 920233, 920234 and 920235 may be biased low and false negatives may exist.

- C. The following results are considered usable for limited purposes because of accuracy problems. The results are considered as estimates and are flagged "J" in Table 1A.
 - Selenium in sample numbers 920204, 920207, 920223, 920226 and 920228

The Method of Standard Addition (MSA) correlation coefficient for selenium in the samples listed above did not meet the ≥ 0.995 criteria for accuracy as shown below.

Sample Number	<u>Analyte</u>	Correlation Coefficient
920204	Selenium	0.9808
920207	Selenium	0.9720
920223	Selenium	0.9867
920226	Selenium	0.9809
920228	Selenium	0.9899

The results for selenium in sample numbers 920204, 920207, 920223, 920226 and 920228 are considered quantitatively questionable.

- D. The following results are considered usable for limited purposes because of accuracy problems. The results are considered as estimates and are flagged "J" in Table 1A.
 - Arsenic in sample numbers 920202, 920204, 920211 and 920230 Lead in sample numbers 920217, 920223 and 920224 Selenium in sample number 920209

 - Thallium in sample number 920228

Arsenic, lead, selenium and thallium were analyzed by the Graphite Furnace AA technique, which requires that a post-digest analytical spike be performed for each sample to establish the accuracy of the individual analytical determination. The analytical spike recovery results for lead, selenium and thallium in the samples listed above did not meet the 85-115% criteria for accuracy as listed below. possible percent bias for each analyte is also presented below.

<u>Analyte</u>	Sample Number	% Recovery	% Bias
Arsenic	920202	80.5	-19.5
•	920204	77.8	-22.2
	920211	80.0	-20.0
	920230	64.2	-35.8
Lead	920217	81.1	-18.9
	920223	80.5	-19.5
	920224	79.0	-21.0
Selenium	920209	65.5	-34.5
Thallium	920228	82.4	-17.6

The results for lead in sample numbers 920217 and 920223 may be biased low. The detection limits for arsenic in sample numbers 920202, 920204, 920211 and 920230, lead in sample number 920224, selenium in sample number 920209 and thallium in sample number 920228 may be biased low and false negatives may exist.

- E. The following results are considered usable for limited purposes because of calibration problems. The results are considered as estimates and are flagged "J" in Table 1A.
 - Mercury in all of the samples and the Lab Blank

An insufficient number of calibration standards were used in the analysis of the samples for mercury. No standards lower than 5.0 μ g/L were analyzed in the calibration for the analysis of mercury by automated cold vapor technique. Method 245.2 CLP-M specifies the analysis of standards containing 0.2, 0.5, 1.0, 5.0, 10.0, 15.0 and 20.0 μ g/L. The low standard used by the laboratory is 25 times higher than the IDL and the CRDL.

In addition, the percent recovery for the mercury CRA was calculated incorrectly. The CRA result was reported as 0.1 μ g/L; however, the IDL and CRDL are reported as 0.2 μ g/L. The correct percent recovery is zero.

Due to the above calibration inadequacy and the zero percent recovery for the CRA, the validity of the mercury results near the detection limit are quantitatively questionable.

- F. The following results are considered usable for limited purposes because of problems with the Interference Check Standard. The results are considered as estimates and are flagged "J" in Table 1A.
 - Cadmium in sample numbers 920201, 920204, 920210, 920212, 920223, 920226 and 920228
 - Zinc in sample numbers 920202, 920204, 920207, 920209, 920223, 920230 and 920234

The above results are considered quantitatively questionable. The true concentration for cadmium and zinc in the laboratory

Interference Check Sample solution (ICSA) was at a zero concentration. However, the Initial and Final analysis of solution A found concentrations of cadmium and zinc above the CRDL. When positive results are observed for elements which are not present in the ICS solutions then the possibility of false positives exists when comparable or higher levels of interferents exist in the sample.

Analyte	ICSA <u>True</u>	ICSA <u>Initial</u>	ICSA Final	IDL	CRDL
Cadmium	0	31	33	2.4	5.0
Zinc		52	52	13.0	20.0

The results for cadmium in sample numbers 920201, 920204, 920210, 920212, 920223, 920226 and 920228 and zinc in sample numbers 920202, 920204, 920207, 920209, 920223, 920230 and 920234 may be biased high.

G. Relative Percent Difference (RPD) values were obtained for the following analytes in the analysis of field duplicate pair samples as shown below.

	920201 D1	920207 D2
	920212 D1	920217 D2
Analyte	RPD	RPD
Aluminum	39.8	37.6
Barium	37.6	34.4
Chromium	36.3	
Cobalt	39.1	
Copper	43.8	
Iron	41.7	32.9
Lead	51.0	
Manganese	38.8	
Nickel	35.5	
Potassium	23.8	
Vanadium	37.3	
Zinc	34.1	200

The analysis of field duplicate samples is a measure of both field and laboratory precision. The results, therefore, have more variability than laboratory duplicates (±20% RPD criteria for percision) which only measures laboratory performance. The inconsistency of the results in the analysis of the field duplicate pair may be due to the sample matrix, high levels of solids in the sample, poor sampling or laboratory technique, or method defects. The effect on the quality of the data is not known.

- H. The 40 CFR 136 technical holding times were not exceeded for any of the samples. There were no holding time problems.
- I. All of the other results are considered valid and usable for all purposes. All QC parameters, other than those discussed above, have been met and are considered acceptable.

ANALYTICAL RESULTS TABLE 1A

Case No.: LV2S27 Memo #04

Site: Waste Disposal, Inc. Lab.: Region IX, Las Vegas

Reviewer: Roy Diaz, ESAT/ICF Technology, Inc.

May 5, 1992 Date:

Analysis Type: Low Level Water Samples for

RAS Total Metals

Concentration in ug/L

Chromium Cobalt Copper Iron	Result 46700 28.2 U 12.7 707 3.3 L	Val	Com	Result 5630	V	al Com	Result	_					1			1		920211				
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	28.2 U 12.7 707 3.3 L	J	G	5630	- (Ve	Com	Result	V	Com	Result	Va	Con	Result	Va	Com	Result	Val Co		
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	12.7 707 3.3 L	J		JUJU			5750			923		G	50.0 U			30500			476			
Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	707 3.3 L	J	1 1	28.2 T	U	900 19400000000	28.2 U	J Common	O \$100.000000	28.2 U	-	one book goods	28.2 U	-40000	*********	28.2 U	1	100000000	28.2 U	georgi, krigase		
Beryllium Cadmium Calcium Chromium Cobalt Copper	3.3 L		В	2.3 [_ 1	ABD	2.0 L	1	ABD	1,3 U	J	В	1.3 U	J	В	15.6	1	В	1.3 U	J BC		
Cadmium Calcium Chromium Cobalt Copper			G	147 I	_ J	A	114 L	J	Α	68.4 L	J	AG	29.7 U	l		724			88.8 L	J A		
Cadmium Calcium Chromium Cobalt Copper Iron Lead		1	Α	1.3 1	. 1	A	1,3 L	1	A	1.1 L	1	A	0.75 L	1	A	2.3 L	1	A	1.3 L	JA		
Chromium Cobalt Copper Iron	14.2	J	F	2.4 l	ו		5.4	1	F	2.4 U			2.4 U			8.2	J	F	2.4 U			
Cobalt Copper Iron	315000			218000			204000			220000			87300			238000			257000			
Copper Iron	81.6		G	13.8			16.5			3.0 U			3.0 U			41.6			4.9 L	JA		
Iron	50.7		G	9.0 t	3		9.0 U			9.0 บ			9.0 U			36.3 L	J	A	9,0 U			
	87.1			7.7 L	.]]	A	11.3 L	J	A	3.7 U			3.7 U			85.8			7.3 L	JA		
Lead	70700		G	7990			8120			1320		G	5480			45400			1110			
	26.8			2.4 L	J	A	3.7	James .		1.0 U	SAMOON	1	1.0 U	Sessoone		17.4			5.1			
Magnesium	112000			67500			64700			70500			58500			78100			69900			
Manganese	2090		G	227	1	1	177		ll	144	annen.		208	annon a		4190			140	3		
Mercury	0.20	J	В	0.20 U		E	0.20 ป	1	E	0.20 U	•	E	0.20 U	J	В	0.30	1	E		JE		
Nickel	69.6		G	12.7 U	<u></u>		16.5 L	J	A	12.7 U	enner.]]	12.7 U	******		36.4 L	J	A		J A		
Potassium	16400		G	6060			6120			4620 L	1	A	4260 L	1	٨	12300			11800			
Selenium	42.5			15.7		J	21.1	J	C	28.0	J	C	1.3 U	J	D	21.1	bource	hasassa la	37.8			
Silver	4.0 U			4.0 U			4.0 U			4.0 U			4.0 U			4.0 U			4.0 U			
Sodium	163000			115000		000000000	128000	600700	.6090vio . 50	173000	000000	,4004500000 N	126000	900802	201003-000	147000	rii inaan	etimetic de	152000			
Thallium	0.60 U			0.60 U			0.60 U			0.60 บ			0.60 U			0.60 U			0.60 U			
Vanadium	126	333300	G	16.8 L	J	A	16.8 L	J	A	8.6 U	002000		8.6 U			84.4		300000000	8.6 U			
Linc	206		G	25.8	3	F	34.4	j	F	25.8	J	FG	17.2 L	J	AF	189			328			
								200000			×20000	ll.	*****									

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter. IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

ANALYTICAL RESULTS TABLE 1A

Case No.: LV2S27 Memo #04

Site:

Waste Disposal, Inc.

Lab.:

Region IX, Las Vegas

Reviewer: Roy Diaz, ESAT/ICF Technology, Inc. Date:

May 5, 1992

Analysis Type:

Low Level Water Samples for

RAS Total Metals

Concentration in ug/L

Sample I.D.	920212	D	L	920217	D	2	920223			920224			920226			920228			920230		
Parameter	Result	Va	Com	Result	Va	Con	Result	V	Con	Result	Va	Соп	Result	Va	Соп	Result	Va	Сол	Result	V	al Co
Aluminum	31200		G	1350		G	9390			50,0 U			21700			33500			272		
Antimony	28.2 U	[200022000	28.2 U	7	2000000	28.2 U	r]		28.2 U		200000000	28.2 U	32222		28.2 U	*****		28.2 U		populario.
Arsenic	12.0	J	В	1.3 U	J	В	2.2 L	J	AB	1,3 U	J	В	9.9 L	3	AB	11.8	1	В	1.3 U	1	BD
Barium	483	3	G	96.8 L	J	AG	269	1		49.2 L	J	A	585			315		2000	65.2 L		A
Beryllium	2.7 L	1	A	1.4 L	,	A	1.6 L	J	A	1.5 L	1	A	2.1 L	7	A	2.8 L	,	A	1.1 L	7	A
Cadmium	9.5	J	F	2.4 U			6.0	J	F	2.4 U			7.0	J	F	9.6	J	F	2.4 U	1	T
Calcium	306000			235000			250000			288000			254000			285000		!	182000		
Chromium	56.5		G	3.0 U			15.2			5.5 L	J	A	33.4			<i>5</i> 5.1			4.1 L	1	A
Cobalt	34.1 L	J	A	9.0 U			9.0 U			9.0 U			33.7 L	J	A	29.8 L	,	A	9.0 U		
Copper	55.8		G	12.2 L	J	A	20.0 L	1	Α	3.7 U			58.1			71.2			3.7 U		[
Iron	46300		G	2270		G	11800			78.3 L	J	A	32800			46600			695	.	
Lead	15.9		G	1.2 L	J	AD	2.1 L	J	AD	1.0 U	J	D	17.8			13.7			1.0 L	J	Α
Magnesium	104000			74400			7570Q			81300			80900			97600			50000		
Manganese	1410		G	162			21000		-5	3.4 L	J	A	2640			1010			94.4		1
Mercury	0.30	J	Б	0.20		Ε	~~0 :4 0	1	E	0.20	J	E	2.0	J	Б		7	E	0,20 U	J	E
Nickel	48.6		G	12.7 U			21.5 L	J	Α	12.7 U			35.6 L	J	Α	54.1			14.5 L	J	A
Potassium	12900		σ	5170			6450			5500			10200			12200			5170		
Selenium	45.7			25.2			22.8	J	В	43.6			33.7	J	C	26.5	J	C	23.6		
Silver	4.0 U			4.0 U			4.0 U			4,0 U			4.0 U			4.0 U			4.0 U		
Sodium	158000			176000			137000			127000			151000			151000			92700		
Thallium	0.60 U		- 1	0.60 U			0.60 U			0.60 U			0.60 ป			0.70 U	3	D	0.60 U		
Vanadi um	86.4		G	8.6 U			37.0 L	J	A	8.6 U			60.3		J.,	94.2			8.6 U	ouncon.	
Line	146		G	ע 13.0		G	51.6	•	F	13.0 U			103			155			17.2 L	J	AF
											∭										

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter. IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

ANALYTICAL RESULTS TABLE 1A

Case No.: LV2S27 Memo #04

Site: Waste Disposal, Inc.

Lab.: Region IX, Las Vegas

Reviewer: Roy Diaz, ESAT/ICF Technology, Inc.

Date: May 5, 1992

Analysis Type:

Low Level Water Samples for

RAS Total Metals

Concentration in ug/L

Sample I.D.	920232	EB	920233	EB	920234		920235	FB	LAB BLANK		IDL		CRDL		
Parameter	Result	Val Com	Result	Val Co	m Result	Val Cor	n Result	Val Con	Result Val	Com Re	sult V	і Соп	Result	Val Co	
Aluminum	50,0 U		50.0 U		50.0 U		50.0 U		50.0 บ		50.0		200		
Antimony	28.2 U		28.2 U		28.2 U		28.2 U		28.2 U		28.2		60.0		
Arsenic	1.3 U	J B	1.3 U	Ј В	1.3 U	JB	1.3 U	J B	1.3 U		1.3		10.0		
Barium	29.7 U		29.7 U		169 L	JA	29.7 U		29.7 U		29.7		200		
Beryllium	0.67 U		0.67 U		0.70 L	JA	0.67 U		0.67 U		0.67		5.0		
Cadmium	2.4 U		2.4 U		2.4 U		2.4 U		2.4 U		2.4		5.0		
Calcium	524 U		524 U		62300	1	524 U		524 U		524		5000		
Chromium	3.0 U		3.0 U		3.0 U		3.0 U		3.0 U		3.0		10.0		
Cobalt	9.0 U		9.0 U		9.0 U		ט 9.0		9.0 🗸 📗		9.0		50,0		
Copper	3.7 U		3.7 U		15.4 L	JA	3.7 U		3.7 U		3.7		25.0		
ron	40,6 U		40.6 U		6410		40.6 U		40.6 U		40.6		100		
.cad	1.7 L	JA	1.0 U		1.0 U		1.0 U		1.0 U		1.0		3.0	1	
Aagnesium	607 W		607 U		17300		607 U		607 U		607		5000		
langanese	2.4 U		2.4 U		40.7		2.4 U		2.4 U		2.4		15.0		
fercury	0.20 U	JE	0.20 บ	J E	0.20 U	JE	0.20 U	J E	0.20 U J	Б	0.20		0.20		
lickel	12.7 U		12.7 U		12.7 U		12.7 U		12.7 U		12.7		40.0		
otasaium	744 U		744 U		3210 L	J A	744 U		744 U		744		5000		
elenium	1.3 U		1.3 U		1.6 L	JA	1.3 U		1.3 U		1.3		5.0		
ilver	4.0 U		4.0 U		4.0 บ		4.0 U		4.0 U		4.0		10.0		
odium	. 569 L	JA	454 U		88100		454 U		454 U		454		5000		
hallium	0.60 บ		0,60 U		0.60 U		0.60 บ		0.60 U		0.60		10.0		
anadium	8.6 U		8.6 U		8.6 U		8.6 U		8.6 U		8.6		50.0		
inc	13.0 U		13.0 U		34.4	JF	13.0 U		13.0 U		13.0		20.0		

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter. IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

TO CHARTET I was a second that the last occuptable both qualitatively and quantitatively.

- Indication of the part star is not detected above the concentration listed. (The City the Instrument Detection Limit for waters and the Label Start of Division South a correction for percent solids).
- The latest and the latest latest the Instrument Detection Limit for waters or the mathod Detection Limit for soils and the Contract Required the mathod of the latest are passaldered estimates and limited property.
- Judition of the state of the st
- Results are intend are unital for any purposes.

0 – No	problems	or	minor	problems	that	do	not	affect	data	usability.
---------------	----------	----	-------	----------	------	----	-----	--------	------	------------

0

__0__

_0__

0

__0__

__M__

___F__

<u>M</u>

0___

____O___

___F__

<u>M</u>

0____

8. DUPLICATE ANALYSIS

11. ICP SERIAL DILUTION

12. SAMPLE VERIFICATION

14. OVERALL ASSESSMENT

10. METHOD OF STANDARD ADDITION (MSA)

9. MATRIX SPIKE

13. REGIONAL QC

AREAS OF CONCERN: The CRA standard for mercury was recalculated to a zero percent recovery. Insufficient number of calibration standards were used and no low level calibration standards for mercury were analyzed. These deficiencies indicate analytical uncertainty near the detection limit. Field duplicate pair D1 had a high RPD for Al. Ba. Cr. Co. Fe. Mn. Ni. K. V and Zn. Field duplicate pair D2 had a high RPD for Al. Ba. Fe and Zn.

X - No more than about 5% of the data points are qualified as either estimated or unusable.

M - More than about 5% of the data points are qualified as estimated.

Z - More than about 5% of the data points are qualified as unusable.

F = not applicable

-

.

ICF TECHNOLOGY INCORPORATED

APR 27 1992 MEMORANDUM

DATE:

April 23, 1992

SUBJECT:

Review of Analytical Data

FROM:

Victoria Taylon

ESAT Senior Analytical Chemist

ICF Technology, Inc.

THROUGH:

Jacob Silva Julian Environmental Scientist

Quality Assurance Management Section

Environmental Services Branch, OPM (P-3-2)

Environmental Services Branch, UPM (P-3-2)

TO:

Kay Lawrence

Remedial Project Manager

Enforcement Programs Section (H-7-2)

Attached are comments resulting from Region 9 review of the following analytical data:

SITE:

Waste Disposal, Inc.

EPA SITE ID NO:

C1

CASE/SAS NO.:

LV2S27 Memo #05

SDG NO.:

920228D

LABORATORY:

Region IX, Las Vegas RAS Dissolved Metals

ANALYSIS:
SAMPLE NO.:

920201D, 920202D, 920204D, 920207D, 920209D, 920210D, 920211D, 920212D, 920217D, 920223D,

920224D, 920226D, 920228D, 920230D, 920232D,

920233D, 920234D and 920235D

COLLECTION DATE:

February 11, 12 and 13, 1992

REVIEWER:

Jack D. Sheets

ESAT/ICF Technology, Inc.

TELEPHONE NUMBER: (415) 882-3061

If there are any questions, please contact the reviewer.

Attachment

TPO: [] For Action

[X] FYI

cc: Brenda Bettencourt, Chief, Laboratory Support Section (P-3-1)

ESATQA9A-5995/JLV2S275.RPT

B-45

Data Validation Report

Case No.: LV2S27 Memo #05 · Waste Disposal, Inc. Laboratory: Region IX, Las Vegas

Jack D. Sheets, ESAT/ICF Technology, Inc. Reviewer:

April 23, 1992 Date:

I. Case Summary

SAMPLE INFORMATION: 920201D, 920202D, 920204D, 920207D, 920209D, SAMPLE #:

920210D, 920211D, 920212D, 920217D, 920223D,

920224D, 920226D, 920228D, 920230D, 920232D,

920233D, 920234D and 920235D

February 11, 12 and 13, 1992 COLLECTION DATE: February 13 and 14, 1992 SAMPLE RECEIPT DATE:

CONCENTRATION & MATRIX: 18 Low concentration water samples

FIELD QC: Field Blanks (FB): 920235D

> 920232D and 920233D Equipment Blanks (EB):

Background Samples (BG): None

> Duplicates (D1): 920201D and 920212D

> > (D2): 920207D and 920217D

LABORATORY QC: Matrix Spike: 920226D

Duplicates: 920226D

ICP Serial Dilution: 929026D

ANALYSIS: RAS Dissolved Metals

Analyte	Sample Preparation and Digestion Date	Analysis <u>Date</u>
ICP Metals	February 26, 1992	February 27, 1992
GFAA: Arsenic Lead Selenium Thallium	, , , , , , , , , , , , , , , , , , ,	March 13, 1992 March 2 and 3, 1992 March 9, 1992 March 3 and 4, 1992
Mercury	February 28, 1992	February 28, 1992

The analytical results with qualifications are listed in Table 1A. The definitions of the data qualifiers used in Table 1A are listed in Table 1B. This report was prepared in accordance with the EPA Contract Laboratory Program Inorganic Statement of Work for March 1990 and the EPA draft document "Laboratory Data Validation Functional Guidelines For Evaluating Inorganic Analyses" (October, 1989).

II. Validation Summary

The data were evaluated based on the following parameters:

Para	<u>meter</u>	<u>Acceptable</u>	G,H I B,D
1.	Data Completeness	No	G,H
2.	Sample Holding Times	Yes	I
3.	Calibration	No	B,D
	a. Initial Calibration Verification		
	b. Continuing Calibration Verification	1	
	c. Calibration Blank		
4.	Blanks	No	В
	a. Laboratory Preparation Blank		
	b. Field Blank		
5.	ICP Interference Check Sample Analysis	Yes	
6.	Laboratory Control Sample Analysis	Yes	
7.	Spiked Sample Analysis	Yes	
8.	Laboratory Duplicate Sample Analysis	Yes	
9.	Field Duplicate Sample Analysis	No	E
10.	GFAA QC Analysis	• No	C,F
	a. Duplicate Injections		
	b. Analytical Spikes		
11.	ICP Serial Dilution Analysis	Yes	
12.	Sample Quantitation	Yes	Α
13.	Sample Result Verification	Yes	J

III. Validity and Comments

- A. The results reported in Table 1A for the following analytes are considered as estimates (J) and are usable for limited purposes only.
 - All results above the Instrument Detection Limit but below the Contract Required Detection Limit (denoted with an "L" qualifier)

Results above the Instrument Detection Limit (IDL) but below the Contract Required Detection Limit (CRDL) are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.

- B. The following results are considered usable for limited purposes because of blank contamination problems. The results are considered as estimates and are flagged "J" in Table 1A.
 - Mercury in sample numbers 920204D, 920209D, 920226D, 920228D and 920230D

The results reported for mercury in the samples listed above are >IDL and <10 times the concentrations of mercury in the equipment blank (920232D = 0.50 μ g/L) and field blank (920235D = 0.30 μ g/L). Laboratory, equipment and field blank results which were less than the CRDL were not used to determine contamination problems.

B-47

An insufficient number of calibration standards were used in the analysis of the samples for mercury. No standards lower than 5.0 µg/L were analyzed in the calibration for the analysis of mercury by automated cold vapor technique. Method 245.2 CLP-M specifies the analysis of standards containing 0.2, 0.5, 1.0, 5.0, 10.0, 15.0, and $20.0 \mu g/L$, in addition to a blank. The laboratory used standards containing 5.0, 10.0, and 15.0 μ g/L plus a blank for calibration. The 5.0 μ g/L low standard used by the laboratory is 25 times higher than the IDL and the CRDL. The effect of this calibration inadequacy on the data is unknown.

- C. The following results are considered usable for limited purposes because of accuracy problems. The results are considered as estimates and are flagged "J" in Table 1A.

 - Lead in samples 920201D, 920202D, 920204D and 920207D Selenium in samples 920209D and 920233D Thallium in samples 920201D, 920202D, 920207D, 920211D, 920212D, 920202D, 920207D, 920211D, 920212D, 920202D, 920207D, 920211D, 920202D, 920207D, 920201D, 920202D, 920207D, 920202D, 920207D, 920202D, 920207D, 920201D, 920202D, 92020D, 920202D, 92020D, 92020D, 92020D, 92020D, 92020D, 92020D, 92020D, 92020 920212D, 920217D and 920226D

Lead, selenium and thallium were analyzed by the Graphite Furnace Atomic Absorption (GFAA) technique, which requires that a postdigest analytical spike be performed for each sample to establish the accuracy of the individual analytical determination. The postdigestion spike recovery results for lead, selenium and thallium in the samples listed above did not meet the 85-115% criteria for accuracy as listed below. The possible percent bias for each analyte is also presented below.

<u>Analyte</u>	Sample #	% Recovery	% Bias
Lead	920201D	83.7	-16.3
	920202D	79.5	-20.5
	920204D	77.0	-23.0
	920207D	74.7	-25.3
Selenium	920209D	68.0	-32.0
	920233D	83.0	-17.0
Thallium	920201D	81.5	-18.5
	920202D	82.0	-18.0
	920207D	80.5	-19.5
	920211D	82.0	-18.0
	920212D	82.5	-17.5
	920217D	81.5	18.5
•,	920226D	82.5	-17.5

The post-digestion spike recovery results for lead, selenium and thallium in the samples listed above show a severe analytical deficiency. The results reported may be biased low and false negatives may exist.

- D. The following results are considered usable for limited purposes because of calibration problems. The results are considered as estimates and are flagged "J" in Table 1A.
 - Thallium in samples 920209D and 920210D

The results reported for thallium in samples 920209D and 920210D are considered quantitatively questionable due to problems encountered in the analysis of the final Continuing Calibration Verification (CCV) solution.

According to the 3/90 CLP Statement of Work (SOW), each CCV analyzed must reflect the conditions of analysis of all associated analytical samples (the preceding 10 analytical samples or the preceding analytical samples up to the previous CCV). Also, if the deviation of the CCV is greater than the control limits of 90-110%, the analysis must be stopped, the problem corrected, the instrument must be recalibrated, the calibration verified and the reanalysis of preceding 10 analytical samples or all samples analyzed since the last compliant CCV must be performed for the analytes affected. thallium, this protocol was not followed. * Due to problems with the graphite furnace tube, an 85% recovery was obtained in the analysis of the final CCV for thallium. The laboratory replaced the graphite tube platform, changing the conditions of analysis for the CCV but not for samples 920209D, 920210D and their analytical spikes. After installing a new platform and correcting the problem, the laboratory immediately analyzed both the final CCV and CCB instead of complying with the SOW. The instrument should have been recalibrated, the calibration verified and samples 920209D, 920210D and their analytical spikes reanalyzed.

- E. A 200% Relative Percent Difference (RPD) was obtained for zinc in the analysis of field duplicate pair samples 920207D and 920217D. Zinc in sample 920207D was not detected but was present in sample 920217D at a concentration of 23.1 μ g/L. The analysis of field duplicate samples is a measure of both field and laboratory precision. The results, therefore, have more variability than laboratory duplicates (\pm 20% RPD criteria for precision) which only measures laboratory performance. The inconsistency of the results in the analysis of the field duplicate pair may be due to the sample matrix, high levels of solids in the sample, poor sampling or laboratory technique, or method defects. The effect on the quality of the data is not known.
- F. Results for GFAA analytical spikes were incorrectly calculated. Sample results < IDL should be treated as "O". The laboratory calculated results < IDL as real numbers with an effect of increasing the percent recovery for negative results or decreasing the percent recovery for results greater than zero but < IDL. For this report, all results were recalculated. Comments were made using the recalculated results.

- G. The chain of custody forms or laboratory data do not indicate how or when the samples were filtered and preserved. The chain of custody forms also do not indicate the concentration or type of water sampled.
- H. The laboratory did not analyze an analytical spike for any of the GFAA analytes in the duplicate analysis of sample 920226D. This omission is not expected to effect the analytical results.
- I. The 40 CFR 136 technical holding times were not exceeded for any of the samples. There were no holding time problems.
- J. All of the other results are considered valid and usable for all purposes. All QC parameters, other than those discussed above, have been met and are considered acceptable.

R-51

for RAS Dissolved Metals

Analysis Type: Low Concentration Water Samples

ANALYTICAL RESULTS TABLE 1A

Case No.: LV2S27 Memo #05

Site: Waste Disposal, Inc.

Lab.: Region IX, Las Vegas

Reviewer: Jack D. Sheets, ESAT/ICF Technology, Inc.

Date: April 23, 1992

Concentration in ug/L

Date Collected Sample Location Sample I.D.	2/12/92 WD920201D 920201D D1			2/13/92 WD920202D 920202D			2/13/92 WD920204D 920204D			2/13/92 WD920207D 920207D D2			2/13/92 WD920209D 920209D			2/12/92 WD920210D 920210D			2/11/92 WD920211D 920211D		
Parameter	Result	V	al Com	Result	V	al Com	Result	Va	Соп	Result	V	al Com	Result	V	ы Сол	Result	Va	Com	Result	V	Cor
Aluminum	50.0	υ		50.0	U		50.0 1	נ		50.0 T	ונ		50.0 U			50.0 t	1		50.0 U	1	
Antimony	28.2	U	A4 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	29.3	L J	A	28.2 (J		28.2 T	J		28.2 U			28.2 U	ı		28.2 U		
Arsenic	1.3	U		1.3	u l		1.3 T)		1.3 U	3		1.3 U			1.3 t			1.3 U		
Barium	53.6	LJ	A	51.0	L J	Α	46.4 I	J	Α	46.6 L	. J	Α	31.7 L	J	A	47.6 L	J	Α	54.1 L	J	A
Beryllium	1.3	L J	A	1.1	ر ار	A	0.94 1	, J	Α	1.1 L	. J	A	0.69 L	J	Α	1.0 L	J	A	1.1 L	J	Α
Cadmium	2.4	U		2.4	J		2.4 (J		2.4 (J		2.4 U			2.4 U			2.4 U		
Calcium	313000			234000			207000	1		238000	1		89800			227000			274000		
Chromium	3.0	U		8.5	t	Α	6.1 L		A	3.0 U	: I		3.0 U			3.0 U			3.0 U		
Cobalt	9.0	U		9.0 1	J		9.0 L	J		9.0 T	1		9.0 U			9.0 U			9.0 U		
Copper	3.7	U		3.7 (3.7 €			3.7 U			3.7 U			3.7 U	l		3.7 U	. I	
[ron	40.6	υ		40.6 1	1		40.6 T	1		40.6 U)		1820			40.6 U			40.6 U		
Lead	1.0	L J	AC	1.0 T	J	; ;	1.0 U	J	C	1.3 L	. J	AC	1.2 L	J	A	6.0			1.0 U	Ì	
Magnesium	93900			69200			62800			73500			58900			64600			73400		
Manganese	2.4	U		2.4 T			2.4 U	7		9.3 L	J	Α	199			2130			6.8 L	J	Α
Mercury	0.20	ช 🦷		0.20 t	1		0.20	J	В	0.20 U			0.20	J	В	0.20 U			0.20 U		
Vickel	12.7	ט		12.9 I	, J	A	12.7 U			12.7 U	r	(3)	12.7 U			12.7 U			12.7 U		
otassium	6030			5480			4450 L	J	Α	4800 L	3	A	4930 L	J	A	5160			11000		
Selenium	33.2			14.1			16.1			19.1			1.3 U	J	C	11.9			37.8]]
ilver	4.0 1	ול		4.0 t	ı		4.0 U			4,0 U			4.0 U			4.0 U			4.0 U		
odium	163000	1		120000	1		130000			176000			126000			137000			157000		
'hallium	0.60 1	J J	C	0.60 L	J	C	0.60 U			0.60 U	3	c	0.60 ט	J	D	0.60 บ	J	D	0.60 U	J	С
/anadium	8.6 1	J		8.6 U			8.6 U		Ī	8.6 U			8.6 U			8.6 U			8.6 U		
inc	15,4 1	. J	A	30.7			15.4 L	J	A	13.0 U		E	13.0 U			15.4 L	3	A	184		

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter. IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

for RAS Dissolved Latais

Low Concentration Wither Supples

order value number of the second seco

S te: te Di pos , Inc

 $\mathbf{I}_{\mathrm{res}}\mathbf{b}_{\star}$: for $\mathbf{I}_{\mathrm{res}}\mathbf{b}_{\star}$ $\mathbf{I}_{\mathrm{res}}=\mathbf{V}_{\star}$

Reviewer: Work D. Les Coulon /ICF Toumology, Inc.

Date: .pril 23, 11.

Concentration in ug/L

Amalysi Type:

Date Collected	2/12/.2	2	2/13/9	2	2/12/	9 2	2/12/	92	2/12/92		2/11/9	2	2/11/92
Sample Location	WD920 ?1	2D	WD9202	17D	WD9202	23D	WD9202	24D	WD920226D	, }	WD92022	8D	WD920230D
Sample I.D.	9202121	Ď1	9202171	D D2	92022	3 D	92022	4 D	920226D		920228	ם	920230D
Parameter	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result V	l Com	Result	Val Com	Result Val Co
Aluminum	50.0 U		50.0 L		50.0 U		50.0 t	,	50.0 U		50.0 U		50.0 U
Antimony	28.2 U	Property (Contract Contract Co	28.2 U	00-005000000000000000	28.2 U		28.2 U	Maria 600000 1000000000000000000000000000000	28.2 U	********	28.2 U		29.5 L J A
Arsenic	1.3 U		1.3 U		1.3 U		1.3 t		1.3 U		1.3 U		1.3 U
Barium	52.0 L	J A	46.8 L		49.4 L	040000000440000000000	49.8 L		55.5 L J	A	57.2 L	J A	60.1 L J A
Beryllium	1.4 L		1,1 L		1.2 L	1 1	1.1 L		1.1 L J	A	1.3 L		0.93 L J A
	2.4 U		2.4 U	Company of the Compan	2.4 U		2.4 U		2.4 U	2002202	2.4 U		2.4 U
Calcium	304000		241000		273000		264000		257000		287000		188000
Chromium	3.0 U		3.0 U		3.6 L	JA	3.0 U		3.0 U		3.0 U		3.1 L J A
Cobalt	9.0 U		9.0 U		9.0 U		9.0 0		9.0 U		9.0 U		9.0 U
Copper	3.7 U		3.7 U		3.7 U		3.7 U		3.7 U		3.7 U		3.7 U
Iron	40.6 U		40.6 U		40.6 U		40.6 U		40.6 U		40.6 U		40.6 U
Lead	1.0 U		1.0 U		1.0 U		1.3 L	J A	1.2 L J	A	1.0 U		1.0 U
Magnesium	91200		74900		77800		75300		75800		86200		50000
Manganese	2.4 U		4.8 L	J A	36.7		2.4 U		12.9 L J	A	2.6 L	J A	2.4 U
Mercury	0.20 U		0.20 U		0.20 U		0.20 U		0.30 J	В	0.20	J B	0.20 J B
Nickel	12.7 U		12.7 U		12.7 U		12.7 U	J	12.7 U		12.7 U		12.7 U
Potassium	5460		4600 L	J A	5270		4120 L	J A	5920		5990		5170
Selenium	37.0		21.7		27.0		27.4		26.5		20.6		21.8
Silver	4.0 U		4.0 U		4.0 U		4,0 U		4.0 U		4.0 U		4.0 U
Sodium	158000		181000		136000		134000		156000		155000		98500
Thallium	0.60 U	ı c	0.60 บ	1 C	0.60 U		0.60 U)40-100-100-100-100-100-00-00-00-00-1-20-00-00-	C	0.60 บ		0.60 U
/anadium	8.6 U		8.6 U		8.6 U		8.6 U	<u> </u>	8.6 U	l	8.6 U		8.6 U
inc	15.4 L	J. A	23.1	E	23.1		15.4 L	J A	30.7		15.4 L	I A	13.0 U

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter. IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

D1, D2, etc.-Field Duplicate Pairs
FB-Field Blank, EB-Equipment Blank, TB-Travel Blank, BG-Background
CRDL-Contract Required Detection Limit

Low Concentration Water Samples

for RAS Dissolved Metals

Analysis Type:

ANALYTICAL RESULTS TABLE 1A

Case No.: LV2S27 Memo #05

Site: Waste Disposal, Inc.

Lab.: Region IX, Las Vegas

Reviewer: Jack D. Sheets, ESAT/ICF Technology, Inc.

Date: April 23, 1992

Concentration in ug/L

Date Collected Sample Location Sample I.D.	2/11/9 WD9209 92023	2320		2/13/9 WD9202 9202331	33D	2/13/ WD9202 92023	134D	2/12/9 WD9202 920235	35D	В	LAB BLA	UNK.		ID	ւ		CRD	L
Parameter	Result	V	ıl Com	Result	Val Con	Result	Val Com	Result	Val	Сош	Result	Va	Сош	Result	Val	Сош	Result	Val Con
Aluminum	50.0	U		50.0 U		50.0	U .	50.0 t	J		50.0 U			50,0			200	
Antimony	28.2	U		28.2 U		28.2	U	28.2 U	7		28.2 U			28.2		Ī	60.0	
Arsenic	1.3	U		1.3 U		1.3 1	וט	1.3 t)		1.3 U			1.3			10.0	
Barium	29.7	บ		29.7 U		148 I	JA	29.7 U	,		29.7 U			29.7			200	11
Beryllium	0.67	U		0.67 U		0.67 t	J	0.67 t	1		0.67 บ			0.67			5.0	
Cadmium	2.4	U		2.4 U		2.4 0	ן	2.4 U			2.4 U			2.4		l	5.0	
Calcium	776	L J	A	524 U		62500		524 U			524 U			524			5000	
Chromium	3.0			3.0 U		3.0 T		3.0 U	. 1 1.		3.0 U			3.0			10.0	
Cobalt	9.0	υ		9.0 U		9.0 t	t	9.0 U			9.0 U			9.0			50.0	1 1
Copper	3.7	U		3.7 U		3.7 t	J	3.7 U	.1		3.7 U			3.7			25.0	
Iron	40.6	σ		40.6 U		52.5 1	. J A	40.6 U	1		40,6 U			40.6			100	
Lead	2.4 1		Α	1.0 U	. 1	1.0 U]	1.8 L		A	1.0 U			1.0	ll		3.0	ll
Magnesium	607 1	J		607 U		17300		607 U			607 U			607			5000	
Manganese	2.4 (ן ד		2.4 U		35.4		2.4 U			2.4 U			2.4			15.0	
Mercury	0.50		В	0.20 U		0.20 L		0.30		В	0.20 U			0.20			0.20	
Nickel	12.7	J		12.7 U		12.7 U		12.7 U		62	12.7 U			12.7			40.0	
Potassium	744 [J		744 U		3170 L	JA	744 U			744 U			744			5000	
Selenium	1.3 (J		1.3 U	1 C	1.3 U		1.3 U			1.3 U			1.3			5.0	
Silver	4.0 t	J		4.0 U		4.0 U		4:0 U			4.0 U			4.0			10.0	
Sodium	654 I	.]]	Α	454 U		89400		454 U			454 U			454			5000	
Thallium	0.60 ા	J		0.60 U		0.60 U		0.60 U			0.60 U			0.60	l.		10.0	
Vanadium	8.6 U	J		8.6 U		8.6 U		8.6 U			8.6 U			8.6			50.0	
Zinc	13.0 t	J .		15.4 L	J A	15.4 L	J A	13.0 U			13.0 U			13.0			20.0	
								ı										

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter. IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

D1, D2, etc.-Field Duplicate Pairs
FB-Field Blank, EB-Equipment Blank, TB-Travel Blank, BG-Background
CRDL-Contract Required Detection Limit

TABLE 1B DATA QUALIFIERS

NO QUALIFIER indicates that the data are acceptable both qualitatively and quantitatively.

- U Indicates that the parameter is not detected above the concentration listed. (Usually the Instrument Detection Limit for waters and the Method Detection Limit for soils with a correction for percent solids).
- L Indicates results which fall between the Instrument Detection Limit for waters or the Method Detection Limit for soils and the Contract Required Detection Limit. Results are considered estimates and are usable for limited purposes.
- J Results are considered estimates and are usable for <u>limited</u> purposes. The results are qualitatively acceptable.
- R Results are rejected and are unusable for any purposes.

INORGANIC REGIONAL DATA ASSESSMENT

CASE NO. <u>LV2S27 Memo #05</u>	LABORATORY	Region I	X. Las V	/egas
SDG NO. <u>920228D</u>	DATA USER	-		
SOW 3/90	REVIEW COMP	LETION DAT	E Apr	11 23, 1992
NO. OF SAMPLES 18 WATER	soir _	OTI	IER	
REVIEWER [] ESD [X] ESAT [] C	THER, CONTRA	CT/CONTRAC	CTOR	
·	ICP	AA	Hg	Other
1. HOLDING TIMES	0	0	0	
2. INITIAL CALIBRATIONS	0	_ 0_	<u>M</u>	
3. CONTINUING CALIBRATIONS	0	. ♦O	0	· · ·
4. FIELD AND EQUIPMENT BLANKS	0	0	<u> </u>	de un est ministration
5. LABORATORY BLANKS	0	0	0	
6. ICP INTERFERENCE CHECK SAMPLE	(ICS) <u>0</u>			
7. LABORATORY CONTROL SAMPLE (LCS) _0_	0	F	· · · · · · · · ·
8. LABORATORY DUPLICATE ANALYSIS	_ 0	0	0	
9. MATRIX SPIKE ANALYSIS	_ 0_	<u> </u>	0	
10. METHOD OF STANDARD ADDITION (M	SA)	F		
11. ICP SERIAL DILUTION	0			
12. SAMPLE VERIFICATION	_ 0	0	0	
13. OVERALL ASSESSMENT	0	<u>M</u>	<u>M</u>	
 0 - No problems or minor problems X - No more than about 5% of the or unusable. M - More than about 5% of the data Z - More than about 5% of the data F - Not applicable. 	lata points and points are	re qualifi qualified	ied as e as esti	ither estimated
TPO ACTION ITEMS: None.				
AREAS OF CONCERN: Insufficient nu analytical spike recoveries for GI GFAA spike recoveries. A high CRI mercury, While there are no critic recovery indicates analytical uncopossible positive bias.	FAA analytes. DL (150%) per eria establis	and inco cent reco hed for C	rrect ca very was RDL reco	lculation of obtained for very, a high

.

43-

APPENDIX C DATA VALIDATION REPORTS - MAY

ICF TECHNOLOGY INCORPORATED

JUL 1 7 1992

MEMORANDUM

DATE:

July 16, 1992

SUBJECT:

Review of Analytical Data

FROM:

Carolyn Studeny

ESAT Senior Organic Data Reviewer

ICF Technology, Inc.

THROUGH:

Roseanne Sakamoto

Environmental Protection Specialist
Quality Assurance Management Section
Environmental Services Branch OPM (P. 3)

Environmental Services Branch, OPM (P-3-2)

TO:

Kathryn Lawrence

Remedial Project Manager

Enforcement Program Section (H-7-2)

Attached are comments resulting from Region 9 review of the following analytical data:

SITE:

Waste Disposal, Inc.

EPA SITE ID NO:

C1

CASE/SAS NO.:

18134 Memo #3

SDG NO.:

YK973

LABORATORY:

IT Corporation-Cerritos

ANALYSIS:

RAS Volatiles, RAS Semivolatiles

and RAS Pesticides/PCBs

SAMPLE NO.:

16 Water Samples (See Case Summary)

COLLECTION DATE:

May 12 through 13, 1992

REVIEWER:

Margaret L. May

ESAT/ICF Technology, Inc.

TELEPHONE NUMBER:

(415) 882-3174

If there are any questions, please contact the reviewer.

Attachment

TPO: [] For Action [X] For Attention [] FYI

cc: Edward Kantor, EMSL-LV, QAD

Steve Remaley

ESAT-QA-9A-6654/T18134#3.RPT

*,

Data Validation Report

Case No.: 18134 Memo #3

Site: Waste Disposal, Inc. Laboratory: IT Corporation-Cerritos

Reviewer: Margaret L. May, ESAT/ICF Technology, Inc.

Date: July 16, 1992

I. <u>Case Summary</u>

SAMPLE INFORMATION:

VOA Sample Numbers: YK973 through YK976 and YK978 through YK989 BNA Sample Numbers: YK973 through YK976 and YK978 through YK988 PEST Sample Numbers: YK973 through YK976 and YK978 through YK988

Concentration and Matrix: Low Level Water

Analysis: RAS Volatiles, RAS Semivolatiles

and RAS Pesticides/PCBs

SOW: 3/90

Collection Date: May 12 through 13, 1992
Sample Receipt Date: May 14 through 15, 1992
Extraction Date: May 14 through June 8, 1992
Analysis Date: May 14 through June 18, 1992

FIELD QC:

Trip Blanks (TB): None Field Blanks (FB): YK989

Equipment Blanks (EB): YK987 and YK988

Background Samples (BG): None

Field Duplicates (D1): YK976/YK986

(D2): YK973/YK985

METHOD BLANKS AND ASSOCIATED SAMPLES:

VBLK1: YK973, YK980 through YK983, YK985, YK987,

YK987MS and YK987MSD

VBLK2: YK974, YK975, YK976, YK978, YK979, YK984,

YK986, YK988 and YK989

SBLK1: YK973, YK980 through YK983, YK985, YK987,

YK983MS and YK983MSD

SBLK2: YK974, YK975, YK976, YK979, YK984, YK986 and

YK988

SBLK3: YK978

PBLK1: YK973 through YK976 and YK978 through YK988

PBLK2: YK983MS and YK983MSD

TABLES:

1A: Analytical Results with Qualifications

1B: Data Qualifiers

1C: Tentatively Identified Compounds

2: Sample Quantitation Limits of Target Compound

List (TCL) Analytes

3: Pesticides: Sample Extraction Dates

MS - Matrix Spike ; Matrix Spike Duplicate

(-2

TPO ATTENTION:

The quantitation limits for all pesticide/PCB target analytes were qualified in all samples due to holding time problems.

ADDITIONAL COMMENTS:

This report was prepared according to the EPA draft document, "National Functional Guidelines for Organic Data Review," December, 1990 (6/91 Revision) and the EPA document, "Data Validation Functional Guidelines for Evaluating Organic Analyses," April 11, 1985.

II. Validation Summary

A	VOA cceptable	_	BNA Acceptable,		PEST Acceptable/	
HOLDING TIMES	[Y]	[C]	[Y]	[C]	[N]	[C]
GC/MS TUNE/GC PERFORMANC	E [Y]	[]	[Y]	[]	[Y]	[]
CALIBRATIONS	[Y]	[]	[Y]	[]	[Y]	[]
FIELD QC	[N]	[B]	[N]	[B]	[Y]	[]
LABORATORY BLANKS	[N]	[B]	[N]	[B]	[Y]	ĺĺ
SURROGATES	[Y]	[]	[Y]	[]	[Y]	[D]
MATRIX SPIKE/DUPLICATES	[Y]	[]	[Y] *	[]	[Y]	[]
INTERNAL STANDARDS	[Y]	[]	[Y]	Ĺĺ	[N/A]	[]
COMPOUND IDENTIFICATION	[Y]	[]	[Y]	[]	[Y]	įj
COMPOUND QUANTITATION	[Y]	[A]	[Y]	[A]	[Y]	Ĺ
SYSTEM PERFORMANCE	[Y]	[E]	[Y]	[E]	[Y]	[E]

N/A - Not Applicable

III. Validity and Comments

- A. The results reported in Table 1A for the following analytes are considered estimates (J) and usable for limited purposes only:
 - All results below the Contract Required Quantitation Limits (denoted with an "L" qualifier)

Results below the Contract Required Quantitation Limits (CRQL) are considered to be qualitatively acceptable but quantitatively unreliable due to the uncertainty in analytical precision near the limit of detection.

- B. Due to blank contamination problems, the results reported in Table 1A for the following analytes are considered as estimates (J) and usable for limited purposes only:
 - Methylene chloride in sample numbers YK973 through YK976, YK979 through YK983, YK985 and YK986
 - Acetone in sample numbers YK975, YK982, YK983 and YK985
 - Chloroform in sample numbers YK976, YK979, YK984 and YK986
 - Di-n-Butylphthalate in sample numbers YK976, YK979 and YK981
 - Butylbenzylphthalate in sample numbers YK974, YK984 and YK985
 - bis(2-Ethylhexyl)phthalate in sample numbers YK973, YK974, YK975, YK979, YK981, YK983, YK984 and YK985

7

Methylene chloride was found in method blanks VBLK1 and VBLK2, field blank sample number YK989 and equipment blank sample numbers YK987 and YK988. Acetone was found in method blank VBLK1, field blank sample number YK989 and equipment blank sample numbers YK987 and YK988. Chloroform was found in field blank sample number YK989 (see Table 1A for concentrations).

Di-n-Butylphthalate and bis(2-ethylhexyl)phthalate were found in method blank SBLK2 and equipment blank sample numbers YK987 and YK988. Butylbenzylphthalate was found in equipment blank sample numbers YK987 and YK988 (see Table 1A for concentrations).

The results for the samples listed above are considered nondetected and estimated (U,J) and the quantitation limits have been increased where appropriate, according to the blank qualification rules.

- C. Due to holding time problems, the quantitation limits for the following analytes are considered estimates (J) and usable for limited purposes only (see Table 2).
 - All pesticide/PCB target analytes in all samples

The 7 day 40 CFR 136 technical holding time for extraction of the pesticide/PCB fraction was exceeded by 19 and 20 days in all samples (see Table 3). The quantitation limits for the analytes listed above are questionable and false negatives may exist.

The holding time for extraction of the BNA fraction was also exceeded in sample number YK978. Sample number YK978 was collected on May 13, 1992 and extracted for semivolatiles 9 days later on May 22, 1992. This exceeds the 7 day 40 CFR 136 technical holding time for extraction by 2 days. This deviation, however, is not expected to affect the quality of the results.

The 40 CFR 136 technical holding times were not exceeded for any of the other samples analyzed.

- D. Recoveries of 54%, 58% and 53% were observed for the pesticide surrogate, decachlorobiphenyl, in sample numbers YK978, YK980 and YK982, respectively. Although these recoveries fall below the 60-150% advisory QC limits, no adverse effect on the quality of the data is expected.
- E. All other results are considered valid and usable for all purposes. All other quality control criteria have been met and are considered acceptable.

ANALYTICAL RESULTS TABLE 1A*

Case No.: 18134 Memo #3

Site: Waste Disposal, Inc.

Lab.: IT Corporation-Cerritos

Reviewer: Margaret L. May, ESAT/ICF Technology, Inc.

Date:

July 16, 1992

Analysis Type: Low Level Water Samples for

RAS Volatiles

Concentration in ug/L

Sample Location Sample I.D.	YK97	3	D2	YK974	1			YK97	5		YK97	6	D1	¥K976	В		YK979)		YK980)	
Compound - Volatiles	Result	Va	Com	Result	Va	Сош	Ra	sult	Va	Соп	Result	Va	Соп	Result	Val	Сош	Result	۷a	Com	Result	Val	Co
Methylene chloride	10 U	J	В	10 U	J	В		10 U	J	В	10 U	1	В	10 U			10 U	j	В	10 U	3	В
Acetone	10 U	1		10 U]			10 U		В	10 U		I	10 U			10 U	a processor		10 U		A126
Carbon disulfide	10 U			10 U	h			10 L			10 U			10 U			10 U			10 U		
Chloroform	10 U			10 U	l			10 L			10 U		В	10 U			13 U	J	В	10 U		
Bromodichloromethane	10 U			10 U				10 L			10 U			10 U			1 L	j į	A	10 U	3.8	9¥
Tetrachloroethene	10 U			10 U				10 U			10 U			10 U			8 L	J	Α	10 U		
Trichloroethene	10 U			10 U				10 L			10 U			10 U		980	10 U			10 U		

Sample Location Sample I.D.	YK98	1		YKS	82			YK98	3		YK9	84			YK985	i	D2	YK98	6	D1	YK98	7	EB
Compound - Volatiles	Result	Val	Com	Result	1	/al Co	_	Result	Va	Com	Result	V	пC	om	Result	Va	Com	Result	Va	Com	Result	Vi	al Co
Methylene chloride	10 U	J	В	10	บป	В		10 U	3	В	10	ΰ		ha ibr	10 U	J	В	10 U	.	В	1 L	, 3	A
Acetone	10 U		1	10	נוט	В		10 U	J	В	10		1	1	10 U	J	В	10 U			5 L	J	A
Carbon disulfide	10 U			10	U			10 U			10	ម			to n			1 L	Į J	A	10 U	/	
Chloroform	10 U	•		10	U		1	10 U				UJ	В	I	10 U			10 U	J	B.	10 U	1	
Bromodichloromethane	10 U	1		10	U			10 U	1		10	וט			10 U		1	10 U	1	1 1	10 U	1	
Tetrachioroethene	10 U			10	U			10 U			10	U			10 U			10 U			10 U	1	
Trichloroethene	10 U	100		10	U			7 L	J	Ą	10	וט	1		10 U		1 1	10 U	d		10 U	1	

^{*}The other requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank

Analysis Type: Low Level Water Samples for

RAS Volatiles

ANALYTICAL RESULTS TABLE 1A*

Case No.: 18134 Memo #3

Site: Waste Disposal, Inc.

Lab.: IT Corporation-Cerritos

Reviewer: Margaret L. May, ESAT/ICF Technology, Inc.

Date: July 16, 1992

Concentration in ug/L

Sample Location Sample I.D.		YK98	8	BB	YK98	9	FB	METHOD VBL		NK	METHOD VBL		NK	CRQL								
Compound - Volatiles	Re	sult	Va	Com	Result	Ve	Com	Result	Va	Соп	Result	Va	Com	Result	Val	Соп	Result	Val	Com	Result	Val	Co
Methylene chloride		2 L	J	À	2 L	1	A	2 L	J	A	2 L	,	A	10	Tayli Tayli				1 1 5 1 NG A		137. P	jeses.
Acetone		5 L	J	Α	14			7 L	J	A	10 U	ı		10			. 22. ****** 2 * * *			A A W. WARRANTON TO		1000
Carbon disulfide		10 L			10 U			10 U			10 U			10								
Chloroform		10 U			2 L	J	A	10 U			10 U		1	10								
Bromodichloromethane		10 L			10 U			10 U			10 U			10								
Tetrachloroethene		10 U			10 U			10 U			10 U			10								
Trichloroethene		10 U	r i		10 U			10 U			10 U			10								Art

Sample Location Sample I.D.															
Compound - Volatiles	Result	Val Cor	Result	Val	Com	Result	Val Con	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com
					# . [-]										
					777 7 5 27 , 13										
<u> 1948</u> , 10. 10. 10. 10. 10. 10. 10. 10. 10.					: .	renin, urnye									

^{*}The other requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank

Analysis Type: Low Level Water Samples for

RAS Semivolatiles

TABLE 1A*

Case No.: 18134 Memo #3

Site: Waste Disposal, Inc.

Lab.: IT Corporation-Cerritos

Reviewer: Margaret L. May, ESAT/ICF Technology, Inc.

Date: July 16, 1992

Concentration in ug/L

Sample Location Sample I.D.		YK97	3	D2		YK9	74			Y	K97	5			YKS	76	I	01		YK97	6			¥K97	9		YK9	30	
Compound - Semivolatiles	Ross	ılt	Val	Com	Rea	ult	Ţ	Val	Соп	Resul	t	Val	Сош	Re	suit		Val	Сош	Ra	nılt	٧a	Соп	Res	ult	Va	Сот	Result	V.	Соп
Diethylphthalate Di-n-Butylphthalate Butylbenzylphthalate		10 U 10 U	1	e s		10 10 10	U		В	1	0 U 0 U				10 10 10	U	j j	В		10 U 10 U				10 U 10 U	J	В	10 T 10 T 10 T	ונ	
bis(2-Ethylhexyl)phthalate		10 U	J	В		10	נוט	r]]	В	1	0 U	J	В		10	U				10 U				10 U	C 100 C	В	10 U		
	18.81A 18.43			\$ Y 1	eren.														da r										

Sample Location Sample I.D.	YK98:	1		YK982			YK983		YK 96	14		YK985	;	D2	YK986	5 1	D1	YK9 8.	7 E	ВВ
Compound - Semivolatiles	Result	Val	Com	Result	Val Com	F	Result '	/al Com	Result	Val C	ош	Result	Va	Com	Result	Val	Com	Result	Val	Соп
Diethylphthalate Di-n-Butylphthalate	10 U		В	10 U			10 U		10 U	AND AND A TOTAL OF		10 U			10 U			0.8 L 1 L	. 100001	A .
Butylbenzylphthalate bis(2-Ethylhexyl)phthalate	10 U		B	10 U 10 U			10 U	В		I J B		10 U	10.00	B B	10 U			2 L 0.7 L	J	A A
ois(z-Edythexyr)phdiatate	10 0		Ь										. 800,5		10 0					
								4 (4)					516.56 173.1							

^{*}The other requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank

Val Com Result

Val Com

Analysis Type: Low Level Water Samples for

RAS Semivolatiles

ANALYTICAL RESULTS TABLE 1A*

Case No.: 18134 Memo #3

Site: Waste Disposal, Inc.

Lab.: IT Corporation-Cerritos

Reviewer: Margaret L. May, ESAT/ICP Technology, Inc.

YK988 EB

Result

Val Com

Date: July 16, 1992

Sample Location

Compound - Semivolatiles

Sample I.D.

Val Com Result

METHOD BLANK

Val Com

CROL

Result

Val Com

Result

SBLK3

Concen	t rat	100	1 n	1100	'T.

METHOD BLANK

SBLK2

Result

METHOD BLANK

SBLK1

Result

Val Com

Diethylphthalate Di-n-Butylphthalate Butylbenzylphthalate bis(2-Ethylhexyl)phthalate	10 U 1 L 2 L 16	J A	10 U		10 U 0.9 L 10 U 0.8 L		10 U 10 U 10 U	1 1	10 10 10 10				
Sample Location Sample I.D.													
Compound - Semivolatiles	Result	Val Cor	n Result	Val Com	Result '	Val Com		Val Com		Val Com	 /al Com	Result	Val Com
				Figure 1									

*The other requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

D1, D2, etc.-Field Duplicate Pairs FB-Field Blank, EB-Equipment Blank, TB-Travel Blank **BG-Background Sample**

ANALYTICAL RESULTS TABLE 1A*

Case No.: 18134 Memo #3

Site:

Waste Disposal, Inc.

Lab.:

IT Corporation-Cerritos

Date:

Reviewer: Margaret L. May, ESAT/ICF Technology, Inc. July 16, 1992

Analysis Type: Low Level Water Samples for

RAS Pesticides/PCBs

Concentration in ug/L

Sample Location Sample I.D.	YK9	73	D2	YK97	4		AK9.	75		YK	976	1	D1	¥K978	3		YK97	9		YK980)	
Compound - Pesticides/PCBs	Result	Val	Com	Result	Ve	Com	Result	Va	Соп	Result	\Box	Val	Com	Result	Val	Сот	Result	Val Co)m	Result	Val	Cor
Aroclor 1260	ï j i	ון ד	С	i i u	Ţ	С	· 1 T	נונ	С	1	U.	j.	С	ា ប	ſ	c	ı u	ı c			j	С
	ij 11 deg			raidh po																		
	e taki								1-1													

Sample Location Sample I.D.	YK98:	1		YK982	2		YK9	83		YK98	4		YK985	5 I	02	YK980	6 :	D1	YK987	7 1	žВ
Compound - Pesticides/PCBs	Result	Val	Com	Result	Val	Com	Result	Va	Сош	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Coı
Aroclor 1260	u t	J	С	ı U	1	С	i	Ωl	C	ı v	j	C	l U	J	c	i u	J	C	្រប	J	C
	nt trắc rin n na liệg				tysto to ky																
					4 j				X 0 00 18 10 8 1 1 1 1 1			şir		N. S.						: « °	
					i gi					Sin ne ee											

*The other requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank

TABLE 1A*

Case No.: 18134 Memo #3

Site:

Waste Disposal, Inc.

Lab.:

IT Corporation-Cerritos

Reviewer: Margaret L. May, ESAT/ICF Technology, Inc.

Date:

July 16, 1992

Analysis Type: Low Level Water Samples for

RAS Pesticides/PCBs

Concentration in ug/L

l Com	om Rea		
1 1		csult \	ValC
	Maria de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de La compansión de la compa	YA SE T	

	ample Location ample I.D.												
9	Compound - Pesticides/PCBs	Result	Val Com	Result V	al Com	Result	Val Com	Result	Val Com	Result Val Com	Result Val Com	Result Val C	Соп
İ													
						i en							
- 1													
						PARL TIME		g 12 mg	d de				

^{*}The other requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank

TABLE 1B DATA QUALIFIERS

NO QUALIFIERS indicates that the data are acceptable both qualitatively and quantitatively.

- U Indicates that the compound is not detected above the concentration listed.
- L Indicates results which fall below the Contract Required Quantitation Limit. Results are considered estimates and usable for limited purposes.
- J Results are estimated and the data are valid for <u>limited</u> purposes. The results are qualitatively acceptable.
- N Presumptive evidence of the presence of the material. The compound identification is considered to be tentative. The data are usable for limited purposes.
- R Results are rejected and data are invalid for all purposes.

TABLE 1C
Detected Tentatively Identified Compounds (TICs)

Case No.:

18134 Memo #3

Site: Laboratory: Waste Disposal, Inc. IT Corporation-Cerritos

Reviewer:

Margaret L. May

ESAT/ICF Technology, Inc.

Date:

July 16, 1992

Sample			Retention	Concentration	Rating ^a
<u>Number</u>	Compound	Fraction	Time, min.	(ug/L)	(Remarks)
YK973	None found	VOA			
	None found	BNA			
17107/		•••			
YK974	None found	VOA			
	None found	BNA	\$		
YK975	None found	VOA			
	None found	BNA			
377077	Name from J	7704			
YK976	None found	VOA			
	None found	BNA			
YK978	None found	VOA			
	Unknown	BNA	10.32	3 J	
	Cyclohexanediol	BNA	10.85	3 J	В
	Unknown	BNA	12.22	4 Ј	
	Fluoronitrophenol	BNA	12.52	6 J	С
	Unknown	BNA	13.65	48 J	
	Unknown	BNA	15.29	2 Ј	
	Unknown	BNA	15.45	2 J	
377070	W	***			
YK979	None found	VOA			
	None found	BNA			
YK980	Unknown	VOA	8.35	22 J	
	Unknown	BNA	11.20	16 J	
	Unknown	BNA	22.29	6 J	
	Unknown	BNA	23.84	4 J	
	Unknown hydrocarbon	BNA	23.95	2 J	
	Unknown hydrocarbon	BNA	24.67	2 J	
	Unknown hydrocarbon	BNA	25.37	2 J	
	Unknown hydrocarbon	BNA	26.79	2 J	
	Unknown hydrocarbon	BNA	27.64	2 J	

J (estimated): Value is considered usable for limited purposes. *Rating codes--probability that identification is correct:

A - High

B - Moderate

TABLE 1C (continued)

Sample Number	Compound	Fraction	Retention Time. min.	Concentration (ug/L)	Rating ^a (Remarks)
YK981	Unknown Unknown	VOA BNA	8.13 22.29	89 J 7 J	
	Unknown	BNA	23.72	, J	
	Unknown	BNA	23.84	6 J	
	Unknown hydrocarbon	BNA	23.94	4 J	
	Unknown hydrocarbon	BNA	24.67	3 J	
	Unknown hydrocarbon	BNA	25.37	2 J	
	Unknown hydrocarbon	BNA	26.04	2 J	
	Unknown hydrocarbon	BNA	27.64	2 J	
YK982	None found	AOV			
	Unknown	BNA	11.20	4 Ј	
YK983	None found	VOA	•		
	Unknown	BNA	11.25	23 J	
YK984	None found	VOA			
	Unknown	BNA	22.30	2 J	
	Unknown	BNA	23.84	4 J	
	Unknown hydrocarbon	BNA	26.79	2 J	r
YK985	None found	VOA			
	None found	BNA			
YK986	None found	VOA			
	None found	BNA			
YK987	None found	VOA	00.00		
	Unknown	BNA	22.29	8 J	
	Unknown	BNA	23.84	6 J	
	Unknown hydrocarbon	BNA	23.95	2 J	
	Unknown hydrocarbon	BNA	24.67	3 J	
	Unknown hydrocarbon	BNA	25.37	3 J	
	Unknown hydrocarbon	BNA	26.04 26.79	2 J 4 J	
	Unknown hydrocarbon	BNA			
	Unknown hydrocarbon	BNA	27.64	2 J	
YK988	None found	AOV			
	None found	BNA			
YK989	None found	VOA			
	Not analyzed	BNA			

J (estimated): Value is considered usable for limited purposes. *Rating codes--probability that identification is correct:

A - High

B - Moderate

C - Low

TABLE 2 Sample Quantitation Limits

Case No.: 18134 Memo #3

Site: Waste Disposal, Inc. Laboratory: IT Corporation-Cerritos

Reviewer: Margaret L. May

ESAT/ICF Technology, Inc.

Date: July 16, 1992

Volatile Compounds	Units. ug/L		Ω	<u>C</u>
Chloromethane	10			
Bromomethane	10			
Vinyl chloride	10			
Chloroethane	10			
Methylene chloride	10	_		
Acetone	10	•		
Carbon disulfide	10			
1,1-Dichloroethene	10			
1,1-Dichloroethane	10			
1,2-Dichloroethene (total)	10			
Chloroform	10			
1,2-Dichloroethane	10			
2-Butanone	10			
1,1,1-Trichloroethane	10			
Carbon tetrachloride	10			
Bromodichloromethane	10			
1,2-Dichloropropane	10			
1,1,2,2-Tetrachloroethane	10			
1,2-Dichloropropane	10			
trans-1,3-Dichloropropene	10			
Trichloroethene	10			
Dibromochloromethane	10			
1,1,2-Trichloroethane	10			
Benzene	10			
cis*1,3-Dichloropropene	10			
Bromoform	10			
2-Hexanone	10			
4-Methyl-2-pentanone	10			
Tetrachloroethene	10			
Toluene	10			
Chlorobenzene	10			
Ethylbenzene	10			
Styrene	10			
Total Xylenes	10			
- -				

Q - Qualifier
C - Comment

TABLE 2 (cont'd)

Semivolatile Compounds	Units. ug/L	Q	<u>c</u>
Phenol	10		
bis(2-Chloroethyl)ether	10		
2-Chlorophenol	10		
1,3-Dichlorobenzene	10		
1,4-Dichlorobenzene	10		
1,2-Dichlorobenzene	10		
2-Methylphenol	10	4	
2,2'-oxybis(1-Chloropropar	ne) 10		
4-Methylphenol	10		
N-Nitroso-di-N-propylamine	10	*	
Hexachloroethane	10		
Nitrobenzene	10		
Isophorone	10	• • • • • • • • • • • • • • • • • • •	
2-Nitrophenol	10		
2,4-Dimethylphenol	10		
bis(2-Chloroethoxy)methane	10		
2,4-Dichlorophenol	10		
1,2,4-Trichlorobenzene	10		
Naphthalene	10		
4-Chloroaniline	10		
Hexachlorobutadiene	10		
4-Chloro-3-methylphenol	10		
2-Methylnaphthalene	10		
Hexachlorocyclopentadiene	10		
2,4,6-Trichlorophenol	10		
2,4,5-Trichlorophenol	25		
2-Chloronaphthalene	10		
2-Nitroaniline	25		
Dimethylphthalate	10		
Acenaphthylene	10		
3-Nitroaniline	25		

Q - Qualifier C - Comment

TABLE 2 (cont'd)

Semivolatile Compounds	Units. ug/L		Q	Ç
Acenaphthene	10			
2,4-Dinitrophenol	25			
4-Nitrophenol	25			
Dibenzofuran	10			
2,4-Dinitrotoluene	10			
2,6-Dinitrotoluene	10			
Diethylphthalate	10			
4-Chlorophenyl-phenylethe	r 10			
Fluorene	10			
4-Nitroaniline	25			
4,6-Dinitro-2-methylpheno				
N-Nitrosodiphenylamine	10			
4-Bromophenyl-phenylether	10			
Hexachlorobenzene	10	•		
Pentachlorophenol	25			
Phenanthrene	10			
Anthracene	10			
Carbazole	10			
Di-n-Butylphthalate	10			
Fluoranthene	10			
Pyrene	10			
Butylbenzylphthalate	10			
3,3'-Dichlorobenzidine	10			
Benzo(a)anthracene	10			
bis(2-Ethylhexyl)phthalat		•		
Chrysene	10			
Di-n-Octylphthalate	10			
Benzo(b)fluoranthene	10			
Benzo(k)fluoranthene	10			
Benzo(a)pyrene	10			
Indeno(1,2,3-cd)pyrene	10		•	
Dibenz(a,h)anthracene	10			
Benzo(g,h,i)perylene	10			

Q - Qualifier C - Comment

TABLE 2 (cont'd)

Pesticides/PCBs	Units, ug/L		Q	Ç
alpha-BHC	0.05		J	· c
beta-BHC	0.05		J	С
delta-BHC	0.05		J	С
gamma-BHC (Lindane)	0.05		J	С
Heptachlor	0.05		J	С
Aldrin	0.05		J	С
Heptachlor epoxide	0.05		J	C
Endosulfan I	0.05		J	C
Dieldrin	0.1		J	C
4,4'-DDE	0.1		J	C
Endrin	0.1		J	С
Endosulfan II	0.1		J	C
4,4'-DDD	0.1	•	J	C
Endosulfan sulfate	0.1		J	C
4,4'-DDT	0.1		J	C
Methoxychlor	0.5		J	C
Endrin ketone	0.1		J	C
Endrin aldehyde	0.1		J	C
alpha-Chlordane	0.05		J	C
gamma-Chlordane	0.05		J	C
Toxaphene	5		J	C
Aroclor-1016	1		J	C
Aroclor-1221	2		J	C
Aroclor-1232	1		J	C
Aroclor-1242	1		J	C
Aroclor-1248	1		J	С
Aroclor-1254	1		J	C
Aroclor-1260	1		J	C

Q - Qualifier
C - Comment

TABLE 2 (cont'd)

To calculate the sample quantitation limits, multiply CRQL by the following factors:

Sample No.	Volatiles	<u>Semivolatiles</u>	<u>Pesticides</u>
YK973	1	1	1
YK974	1	1	1
YK975	1	1	1
YK976	1	1	1
YK978	1	1	1
YK979	1	1	1
YK980	1	1	1
YK981	1	1	1
YK982	1	1	1
YK983	1	1	1
YK984	1	1	1
YK985	1	<u> </u>	1
YK986	1	1	1
YK987	1	1	1
YK988	1	1	1
YK989	1	N/A	N/A
Method Blanks	1	1	1

N/A - Not Analyzed

TABLE 3
Posticides: Sample Extraction Dates

Case No.:

18134 Memo #3

Site:

Waste Disposal, Inc.

Lab.:

IT Corporation-Cerritos

Reviewer:

Margaret L. May, ESAT/ICF Technology, Inc.

Date:

July 16, 1992

Sample	Collection	Reextraction	Days Exceeding
Number	Date	Date	Extraction HT
VV073	05/10/00	04 108 100	20
YK973 YK974	05/12/92 05/13/92	06/08/92 06/08/92	19
YK975 YK976	05/13/92 05/13/92	06/08/92 06/08/92	19 . 19
YK978 YK979 YK980	05/13/92 05/13/92 05/12/92	06/08/92 06/08/92 06/08/92	19 19 6 20
YK981 YK982	05/12/92 05/12/92 05/12/92	06/08/92 06/08/92	20 20 20
YK983 YK984	05/12/92 05/13/92	06/08/92 06/08/92	20 20 19
YK985 YK986	05/12/92 05/13/92	06/08/92 06/08/92	20 19
YK987 YK988	05/12/92 05/13/92	06/08/92 06/08/92	20 19
1 1 1 1 1 1 1	U3/13/92	V0/V8/92	19

HT - Holding Time 40 CFR 136 Holding Times: 7 days for extraction 40 days from extraction for analysis

PO: [] ACTION [X] ATTENTION [] FYI ORGANIC REGIONAL	DATA ASS	ESSMENT		Region <u>IX</u>
CASE NO. <u>18134 Memo #3</u> LABO	RATORY	IT Co	rporation	n-Cerritos
SDG NO. YK973 DATA	USER			
SOW	EW COMPL	ETION DA	TE <u>Ju</u>	ly 16. 1992
NO. OF SAMPLES 16 WATER S	OIL	отн	ER	
REVIEWER [] ESD [X] ESAT [] OTHER,	CONTRAC	T/CONTRA	CTOR	
ASE NO. 18134 Memo #3				
1. HOLDING TIMES	_0_	0	<u>M</u>	
2. GC-MS TUNE/GC PERFORMANCE		0	0	
3. INITIAL CALIBRATIONS	0	0	0	
4. CONTINUING CALIBRATIONS	0	<u> </u>	0	-
5. FIELD QC	<u> </u>	<u> </u>	0	
6. LABORATORY BLANKS	<u>_x</u> _	X	0	· · · · · · · · · · · · · · · · · · ·
7. SURROGATES		0	0	
8. MATRIX SPIKE/DUPLICATES	0	0	0	
9. REGIONAL QC	<u> </u>	F	F	·
10. INTERNAL STANDARDS	0		<u> </u>	
11. COMPOUND IDENTIFICATION	0	0	0	
12. COMPOUND QUANTITATION	0	0	_ 0_	
13. SYSTEM PERFORMANCE	<u>x</u>	<u> </u>	0	
 X - No more than about 5% of the data poor unusable. M - More than about 5% of the data point Z - More than about 5% of the data point 	do not af oints are ts are qu	fect dat qualifi	a usabil ed as ei as estim	ther estimated
F - Not applicable. TPO ACTION ITEMS:	·			
AREAS OF CONCERN.				

ICF TECHNOLOGY INCORPORATED

AUG 2 4 1992

MEMORANDUM

TO:

Kay Lawrence

Remedial Project Manager

Enforcement Program Section (H-7-2)

THROUGH:

Roseanne Sakamoto

Environmental Protection Specialist Quality Assurance Management Section

Environmental Services Branch, OPM (P-3-2)

FROM:

Margie D. Weiner

ESAT Inorganic Data Reviewer

ICF Technology, Inc.

DATE:

August 18, 1992

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region IX review of the following analytical data:

SITE:

Waste Disposal, Inc.

EPA SITE ID NO:

CASE/SAS NO.:

18134 Memo #01 and Memo #02

SDG NO.:

MYJ101 and MYJ123

LABORATORY:

American Analytical & Technical Services (AATS)

ANALYSIS:

RAS Total and Dissolved Metals

SAMPLE NO.:

32 Low Concentration Groundwater Samples (see

Case Summary)

COLLECTION DATE:

May 12 and 13, 1992

REVIEWER:

Jack D. Sheets, ESAT/ICF

If there are any questions, please contact Margie D. Weiner (ESAT/ICF) at (415) 882-3061.

Attachment

Edward Kantor, EMSL-LV, QAD

Steve Remaley, USEPA Region IX Ray Flores, TPO USEPA Region VI

TPO: [] For Action [X] Attention

[] FYI

ESATQA9A-6838/J1813412.RPT

1-21

Data Validation Report

Case No.: 18134 Memo #01 and Memo #02

Site: Waste Disposal, Inc.

Laboratory: American Analytical & Technical Services (AATS)

Reviewer: Jack D. Sheets, ESAT/ICF Technology, Inc.

Date: August 18, 1992

I. Case Summary

SAMPLE INFORMATION: SAMPLE NO.: SDG No. MYJ101: MYJ101 through MYJ108, and

MYJ111 through MYJ122

SDG No. MYJ123: MYJ123 through MYJ134

COLLECTION DATE: May 12 and 13, 1992

SAMPLE RECEIPT DATE: May 15, 1992

CONCENTRATION & MATRIX: 32 Low concentration groundwater samples

FIELD QC: Field Blanks (FB): MYJ133 and MYH134

Equipment Blanks (EB): MYJ129 through MYJ132

Background Samples (BG): None

Duplicates (D1): MYJ101 and MYJ125

(D2): MYJ102 and MYJ126 (D3): MYJ107 and MYJ127

(D4): MYJ108 and MYJ128

LABORATORY QC: Matrix Spike: MYJ121, MYJ122, MYJ123, and MYJ124 (Hg only)

Duplicates: MYJ121, MYJ122, MYJ123, and MYJ124 (Hg only)

ICP Serial Dilution: MYJ121, MYJ122, and MYJ123

ANALYSIS: RAS Total and Dissolved Metals

Analyte	Sample Preparation and Digestion Date	Analysis Date
ICP Metals	May 20, 1992	May 21, 26 and 28, 1992
GFAA: Arsenic Lead Selenium Thallium	May 20, 1992 May 20, 1992 May 20, 1992 May 20, 1992	May 20,21, 22, 23, and 26, 1992 May 20, 21, and 22, 1992 May 21, 22, 26, and 27, 1992 May 20 and 21, 1992
Mercury	May 21 and 26, 1992	May 21 and 26, 1992

ADDITIONAL COMMENT:

This report combined the data packages from SDG MYJ101 and SDG MYJ123 in order to better evaluate the analytical data. Insufficient or incomplete data forced the usage of QC samples for both SDGs. All samples were collected at the same time, at the same site, and were prepared and digested on the same day by the laboratory. Samples for dissolved metals were filtered and preserved in the field. The analytical results with qualifications are listed in Table 1A. The definitions of the data qualifiers used in Table 1A are listed in Table

1-22

1B. Equipment or field blanks and associated samples are listed below the data qualifiers in Table 1B. This report was prepared in accordance with the EPA Contract Laboratory Program Statement of Work for March 1990 and the EPA draft document "Laboratory Data Validation Functional Guidelines For Evaluating Inorganic Analyses" October, 1989.

II. Validation Summary

The data were evaluated based on the following parameters:

<u>Para</u>	<u>meter</u>	<u>Acceptable</u>							
1.	Data Completeness	Yes	н						
2.	Sample Holding Times	Yes	I						
3.	Calibration	Yes							
	a. Initial Calibration Verification								
	b. Continuing Calibration Verification	า							
	c. Calibration Blank								
4.	Blanks	No	В						
	a. Laboratory Preparation Blank								
	b. Field Blank	•							
	c. Equipment Blank								
5.	ICP Interference Check Sample Analysis	Yes							
6.	Laboratory Control Sample Analysis	Yes							
7.	Spiked Sample Analysis	No	С						
8.	Laboratory Duplicate Sample Analysis	Yes							
9.	Field Duplicate Sample Analysis	No	G						
10.	GFAA QC Analysis	No	D,F						
	a. Duplicate Injections								
	b. Analytical Spikes								
11.	ICP Serial Dilution Analysis	No	E						
12.	Sample Quantitation	Yes	A						
13.	Sample Result Verification	Yes	J						

III. Validity and Comments

- A. The results reported in Table 1A for the following analytes are considered as estimates (J) and are usable for limited purposes only.
 - All results above the Instrument Detection Limit but below the Contract Required Detection Limit (denoted with an "L" qualifier)

Results above the Instrument Detection Limit (IDL) but below the Contract Required Detection Limit (CRDL) are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.

- B. The following results are considered usable for limited purposes because of blank contamination problems. The results are considered estimates and are flagged "J" in Table 1A.
 - Lead in samples MYJ103, MYJ104, MYJ105, MYJ106, MYJ111, MYJ123, and MYJ124
 - Zinc in samples MYJ102, MYJ108, MYJ116, MYJ118, MYJ120, MYJ122, MYJ126, and MYJ128

The results reported for lead and zinc in the samples listed above are considered quantitatively uncertain. Analytical uncertainty near the detection limit exists because of possible equipment and field blank contamination.

Zinc was reported in equipment blank (EB) MYJ130 at a concentration greater than the CRDL, and lead was reported in equipment and field blank (FB) samples at concentrations greater than the CRDL, as listed below. All samples collected on the same day as the blanks with results less than 10 times the value of the blanks were estimated.

<u>Analyte</u>	Sample #	Result $(\mu g/L)$	CRDL (µg/L)
Lead	MYJ131 (EB)	3.4	3.0
Lead	MYJ132 (EB)	3.6	3.0
Lead	MYJ133 (FB)	3.2	3.0
Lead	MYJ134 (FB)	3.8	3.0
Zinc	MYJ130 (EB)	25.5	20.0

An equipment blank is reagent water that has been collected as a sample using decontaminated sampling equipment. The intent of an equipment blank is to monitor for contamination introduced by the sampling activity, although any laboratory introduced contamination will also be present.

Field blanks are intended to detect contaminants that may have been introduced in the field. Contaminants that are found in the field blank which are absent in the laboratory preparation blank could be indicative of a field QC problem, a deficiency in the bottle preparation procedure, a difference in preparation of the laboratory and field blanks, or other indeterminate error.

- C. The following results are considered usable for limited purposes because of accuracy problems. The results are considered estimates and are flagged "J" in Table 1A.
 - Arsenic in samples MYJ101 through MYJ108, MYJ111 through MYJ122, and MYJ124 through MYJ134
 - Barium and Iron in samples MYJ101, MYJ103, MYJ105, MYJ107,
 MYJ111, MYJ113, MYJ115, MYJ117, MYJ119, MYJ121, MYJ125, MYJ127,
 MYJ129, MYJ131, and MYJ133
 - Lead and thallium in samples MYJ101 through MYJ108, MYJ111 through MYJ122, and MYJ123 through MYJ134

- Selenium in samples MYJ103, MYJ105, MYJ107, MYJ111, MYJ115,
 MYJ117, MYJ121, MYJ123, MYJ127, MYJ129, MYJ131, and MYJ133
- Silver in samples MYJ101, MYJ103, MYJ105, MYJ107, MYJ111, MYJ113, MYJ115, MYJ117, MYJ119, MYJ121, MYJ123, MYJ125, MYJ127, MYJ129, MYJ131, and MYJ133

The matrix spike recovery results for the analytes listed above in QC samples MYJ121, MYJ122, and MYJ123 did not meet the 75-125% criteria for accuracy. The percent recovery and percent bias for each analyte is presented below and is based on an ideal recovery of 100%.

Analyte	MYJ121 Total % Recovery	MYJ121 Total % Bias	MYJ122 Dissolved % Recovery	MYJ122 Dissolved % Bias	MYJ123 Total % Recovery	MYJ123 Total % Bias
Arsenic	71.8	-28.2	68.3	-31.7	•••	
Barium	53.8	-46.2				
Iron	52.0	-48.0				
Lead	40.4	-59.6	55.9	-44.1	45.2	-54.8
Selenium	0.0	-100				
Silver	71.9	-28.1	• • •		72.5	-27.5
Thallium	56.3	-43.7	64.1	-35.9	59.0	-41.0

Results above the IDL are considered quantitatively uncertain. The results reported for the analytes in the samples listed above may be biased low. The detection limits reported for the analytes in the samples listed above may be biased low and false negatives may exist. The percent recovery for selenium in samples MYJ122 and MYJ123 could not be used for evaluation due to a difference in methodologies used for analysis. The sample result was determined by the Method of Standard Additions (MSA) and the spiked sample result was determined directly from the GFAA calibration curve. The same method must be used for evaluation of matrix spike results.

Matrix spike results from SDG MYJ101 were used to evaluate the data in SDG MYJ123. The samples are from the same site and were prepared and digested on the same day. The first 20 samples are included with SDG MYJ101 and the following 12 samples were included in SDG MYJ123. Insufficient or incomplete data forced the usage of QC samples for both SDGs.

- D. The following results are considered usable for limited purposes because of accuracy problems. The results are considered estimates and are flagged "J" in Table 1A.
 - Arsenic in samples MYJ106, MYJ108, MYJ112, MYJ114, MYJ116,
 MYJ117, MYJ120, MYJ122, MYJ126, MYJ129, and MYJ131
 - Lead in samples MYJ101 through MYJ108, MYJ111 through MYJ118, MYJ120 through MYJ128, and MYJ130
 - Thallium in samples MYJ101 through MYJ108, and MYJ111 through MYJ128

Arsenic, lead, and thallium were analyzed by the Graphite Furnace Atomic Absorption (GFAA) technique, which requires that a post-digestion analytical spike be performed for each sample to establish the accuracy of the individual analytical determination. The analytical spike recovery results for arsenic, lead, and thallium in the samples listed above did not meet the 85-115% criteria for accuracy. The percent recovery and possible percent bias for each analyte is presented below and is based on an ideal recovery of 100%.

		•	
<u>Analyte</u>	Sample Number	% Recovery	% Bias
Arsenic	MYJ106	65.7	-34.3
	MYJ108	83.1	-16.9
	MYJ112	74.2	-25.8
	MYJ114	66.5	-33.5
	MYJ116	82.1	-17.9
	MYJ117	83.3	-16.7
	MYJ120	82.4	-17.6
	MYJ122	56.7	-43.3
	MYJ126	78.9	-21.1
	MYJ129	81.3	-18.7
	MYJ131	79.6	-20.4
Lead	MYJ101	47.5	-52.5
	MYJ102	44.3	-55.7
	MYJ103	56.1	-43.9
	MYJ104	47.2	-52.8
	MYJ105	55.3	-44.7
	MYJ106	40.3	-59.7
	MYJ107	51.0	-49.0
	MYJ108	53.7	-46.3
	MYJ111	56.3	-43.7
	MYJ112	51.8	-49.2
	MYJ113	49.1	-50.9
	MYJ114	43.7	-56.3
	MYJ115	47.3	-52.7
	MYJ116	49.5	-50.5
	MYJ117	54.6	-45.4
	MYJ118	49.6	-50.4
	MYJ120	58.2	-41.8
	MYJ121	48.9	-51.1

Analyte	Sample Number	% Recovery	% Bias
Lead	MYJ122	61.3	-38.7
	MYJ123	58.7	-41.3
	MYJ124	69.4	-30.6
	MYJ125	58.0	-42.0
	MYJ126	56.6	-43.4
	MYJ127	53.8	-46.2
	MYJ128	57.0	-43.0
	MYJ130	116.9	+16.9
Thallium	MYJ101	74.5	+25.5
	MYJ102	46.6	-53.4
	MYJ103	58.3	-41.7
	MYJ104	41.6	-58.4
	MYJ105	73.1	-26.9
	MYJ106	76.4	-23.6
	MYJ107	77.8	-22.2
	MYJ108	78.6	-21.4
	MYJ111	61.7	-38.3
	MYJ112	73.5	-26.5
	MYJ113	69.8	-30.2
	MYJ114	67.9	-32.1
	MYJ115	57.0	-43.0
	MYJ116	76.0	-24.0
	MYJ117	67.5	-32.5
	MYJ118	74.3	-25.7
	MYJ119	59.7	-40.3
	MYJ120	68.7	-31.3
	MYJ121	61.5	-38.5
	MYJ122	70.1	-29.9
	MYJ123	77.9	-22.1
	MYJ124	78.1	-21.9
	MYJ125	73.4	-26.6
	MYJ126	74.0	-26.0
	MYJ127	70.1	-29.9
	MYJ128	73.3	-26.7

The post-digestion spike recovery results for arsenic, lead, and thallium in the samples listed above show an analytical deficiency. The results reported for arsenic, lead, and thallium in the samples listed above are considered quantitatively uncertain. The result reported for lead in sample MYJ130 may be biased high. The results reported for arsenic, lead, and thallium in the samples listed above may be biased low and, where non-detected, false negatives may exist.

- E. The following results are considered usable for limited purposes because of a problem with the ICP serial dilution. The results are considered estimates and are flagged "J" in Table 1A.
 - Calcium, magnesium, and sodium in samples MYJ102, MYJ104,
 MYJ106, MYJ108, MYJ112, MYJ114, MYJ116, MYJ118, MYJ120, MYJ122,
 MYJ124, MYJ126 and MYJ128

ESATQA9A-6838/J1813412.RPT

1-27

The percent difference of the ICP serial dilution analysis of sample number MYJ122 did not meet the less than 10% criteria for the analytes shown below.

	MYJ122
	Dissolved
Analyte	% Difference
Calcium	12.0
Magnesium	13.5
Sodium	16.2

A five fold dilution of a sample is performed in association with the ICP procedure to indicate whether interferences exist due to sample matrix effects. The results reported for calcium, magnesium, and sodium in the samples listed above are considered quantitatively uncertain. Chemical and physical interferences may exist due to the sample matrix.

- F. The following results are considered usable for limited purposes because of accuracy problems. The results are considered estimates and are flagged "J" in Table 1A.
 - Lead in sample MYJ119
 - Selenium in samples MYJ104, MYJ118, MYJ119, MYJ122, MYJ123, and MYJ128

The results reported for lead and selenium in the samples listed above are considered quantitatively uncertain. The Method of Standard Addition (MSA) is the addition of 3 increments of a standard spike solution (at spike levels of 50%, 100%, and 150% of the sample concentration) to sample aliquots of the same size. Measurements are made on the original sample and on each addition. This technique compensates for a sample constituent that enhances or depresses the analytical signal thus producing a slope different from that of the calibration curve. When the spike level criterium is not met, the results may have an increased variability. The spiking levels for lead and selenium in the samples listed above were not spiked at the correct levels. The samples were spiked at 10 $\mu \rm g/L$, 20 $\mu \rm g/L$ and 30 $\mu \rm g/L$ regardless of the initial sample concentration. Information from the MSA analysis is summarized below.

Analyte	Sample #	Result (µg/L)	Required Spike Levels
Lead	MYJ119	5.5	2.5, 5.0, 7.5
Selenium	MYJ104 MYJ118 MYJ119 MYJ122 MYJ123 MYJ128	50.5 53.7 5.2 6.0 5.2 6.3	25, 50, 75 25, 50, 75 2.5, 5.0, 7.5 3.0, 6.0, 9.0 2.5, 5.0, 7.5 3.0, 6.0, 9.0

G. A Relative Percent Difference (RPD) greater than 20% was obtained for aluminum, iron, and manganese in the analysis of field duplicate pair samples as shown below.

	MYJ101 D1	MYJ107 D3
	MYJ125 D1	MYJ127 D3
Analyte	RPD	RPD
Aluminum	69.9	23.2
Iron	80.5	31.2
Manganese	31.1	

The analysis of field duplicate samples is a measure of both field and laboratory precision. The results are expected to vary more than laboratory duplicates (±20% RPD criteria for precision) since sampling variability is included in the measurement. The imprecision of the results of the analysis of the field duplicate pair may be due to the sample matrix, high levels of solids in the sample, poor sampling or laboratory technique, or method defects. The effect on the quality of the data is not known.

- H. A CRDL standard was not analyzed during the analysis of the samples for mercury. The linearity near the CRDL for mercury could therefore not be verified. According to the 3/90 SOW, in order to verify linearity near the CRDL, the laboratory must analyze an AA standard at the CRDL or the IDL, whichever is greater, at the beginning of each sample analysis run, but not before the Initial Calibration Verification (ICV).
- I. The 40 CFR 136 technical holding times were not exceeded for any of the samples. There were no holding time problems.
- J. All of the other results are considered usable for all purposes.
 All QC requirements, other than those discussed above, have been met
 and are considered acceptable.

ANALYTICAL RESULTS TABLE 1A

Case No.: 18134 Memo #01

Lab.:

Site: Waste Disposal, Inc.

American Analytical & Technical Services (AATS)

Reviewer: Jack D. Sheets, ESAT/ICF Technology, Inc.

Date: August 18, 1992

Analysis Type:

Low Concentration Water Samples

for RAS Metals (total & dissolved

SDG: MYJ101

Concentration in ug/L

Collection Date	5-12-92			5-12-92			- 1	5-13-92	5-13-92 5-13-92				5-13-92		5-12-92						
Sample Location	GW-01			GW-01			1	GW-02			GW-02			GW-04			GW-04		GW-07		
Sample I.D.	MYJ101	D1		MYJ102	D2			MYJ103			MYJ104			MYJ105			MYJ106		MYJ107 D3		
Metals Type	Total			Dissolv	ed			Total			Dissolve	đ		Total			Dissolved		Total	Total	
Parameter	Result	V	al Con	Result		Val	Com	Result	V	d Cor	Result		al Co	m Result	V	ll Com	Result	Val Cor	Result	Val Co	
														7. 1.0.112416	er 1257			1			
Aluminum	1620		G	1	U	- 1	1	2950	-		104	,		7180			104 U	1. 1. 1. E	1590	G	
Antimony	16.0	U	-	16.0		- 1	l	16.0	- I	1	16.0	- 1	- }	16.0			16.0 U		16.0 U] [
Arsenic	6.0	UJ	C	6.0	U	J	C	6.0	UJ	C	The state of the s	ប្រា	C		ן ט	C	6.0 U		6.0 U	1 1	
Barium	64.7	L J	AC	21.5	L	J /	A	110	r 1	AC	28.0	{-	A	159		AC	21.7 L	Linn linin	87.0 L	J AC	
Beryllium	1.0	U	1	1.0	บ			1.0	ט		1.0			1.3	90 1000	A	1.0 U	9 2000 200 40 0 0 0.0	1.0 U		
Cadmium	2.0	U		2.0	U		ľ	2.0	U		2.0			2.0	וט		2.0 U		2.0 U		
Calcium	278000			287000)	J]	E	208000			208000	J	E	196000			194000	J E	226000		
Chromium	9.3	LJ	Α	7.4	L	J	A	10.8	1	1	7.1	LJ	A	18.9		1	9.2 L	JA	3.9 L	JA	
Cobalt	6.0	U		6.0	ט ו			6.0	ַט		6.0	บ		6.0	ן ט		6.0 U	1 1	6.0 U		
Copper	14.5	LJ	Α	6.9	L	J .	A	41.5			6.5	LJ	A	23.8	LJ	A	6.4 L	JA	13.3 L	J A	
Iron	2070	J	CG	104				4450	J	C	67.9	LJ	A	8280	J	C	79.3 L	J A	2520	1 CC	
Lead	2.2	LJ	ACD	1.0	U	J	CD	3.4	J	BCD	1.4	LJ	ABC	7.2	J	BCD	2.2 L	J ABCI	1.3 L	J AC	
Magnesium	85100			86700		J I	E	62700			61900	J	E	61600	l.		58900	J E	71700		
Manganese	198		G	8.0	1	J	A	241			7.2	LJ	A	348			11.3 L	JA	308		
Mercury	0.20	บ	н	0.20	U	1	н	0.20	บ	Н	0.20		Н	0.57	1	H	0.20 U	н	0.20 U	H	
Nickel	8.0	- 1		T	U			8.0	- 1		8.0	U	· P	15.0	L J	A	8.0 U		8.0 U		
Potassium	5210	J. In		5060			. 73-	5030			4380	LJ	A	5180			4970 L	JA	4500 L	J A	
Selenium	48.8		2.	46.4		1		16.2	1	c	50.5	J	F	19.5	J	C	21.9		25.7	1 C	
Silver		UJ	C	1	U			1.0	ulı	С	1.0	บ	4 W.	1.0	ולט	c	1.0 U		1.0 0	J C	
Sodium	143000	1		146000		, ,	Ε	108000			109000	J	E	118000			120000	JE	163000		
Thallium		UJ	CD		U	· 1-	CD	2.0	uli.	CD		UJ	CD		ולט	CD	2.0 U	J CD	2.0 U	J CD	
Vanadium	11.2	Sec. 21.	A	The state of the s	U		7.7	Partition of the second	I]	A	6.0		*	26.0	200 NOOR	A	6.0 U	* P. C. St. 18 (1974) 18 19 19 19 19 19 19 19 19 19 19 19 19 19	8.5 L	JA	
Zinc	19.7		Â	1	L	J	AB	51.6	٦[-		19.6		A	65.8	- [237		20.4		
					İ			pour la Studio de la Suitante de la Suitante de la Suitante de la Suitante de la Suitante de la Suitante de la La companya de la Suitante de			or complete Sparsening		27,1300		20 000						
			1	1	- 1					1	1					1	1				

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter. IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

D1, D2, etc.-Field Duplicate Pairs
FB-Field Blank, EB-Equipment Blank, TB-Travel Blank, BG-Background
CRDL-Contract Required Detection Limit

Case No.: 18134 Memo #01

Site: Waste Disposal, Inc.

Lab.: American Analytical & Technical Services (AATS)

Reviewer: Jack D. Sheets, ESAT/ICF Technology, Inc.

Date: August 18, 1992

Analysis Type:

Low Concentration Water Samples

for RAS Metals (total & dissolved

SDG: MYJ101

Concentration in ug/L

Collection Date	5-12-92				5-13-92			5-13-92			5-13-92			5-13-92			5-12-92		5-12-9	2	
Sample Location	GW-07				GW-10			GW-10			GW-11			GW-11			GW-23		GW-23		
Sample I.D.	MYJ108	D4			MYJ111			MYJ112		•	MYJ113			MYJ114			MYJ115		MYJ116		
Metals Type	Dissolve	be			Total			Dissolve	đ		Total			Dissolved			Total		Dissol	ved	
Parameter	Result		Val	Соп	Result	Ve	d Con	Result	V	l Con	Result	V	al Cor	n Result	Val	COM	Result	Val C	om Result		Val Co
Aluminum	104	¥J		JACT.	9490			104	u		104	U		104 U			2490	a	16	4 U	
Antimony	16.0	- 1			16.0	u		16.0	1	İ	16.0	- 1		16.0 U	1		16.0 U		1	0 U	
Arsenic	6.0	i	J	CD	9.5 1	. 1	AC	6.0	UJ	CD	6,0	נוט	C	6.0 U	1 0	מכ	6.0 U	1 . 1	· · ·	0 U	CE
Barium	18.1		J	A	382	J	С	24.7	LJ	Α	26.2	- 1	AC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	J	- 1	89.5 L	1 1	The second second	1 L	
Beryllium	1.0				1,4 1	ا را ن	A	1.0	LJ	A	1.0			1.1 L	3		1.0 U	1 1		0 U	
Cadmium	2.0				2.0	1		2.0	U		2.0			2.0 U			2.0 U		4	o U	1
Calcium	204000		3	E	225000			226000	J	E	277000			268000	JE	;	232000		23900		E
Chromium	3.3	L	J	A	18.1		1	3.0	U	1	5.9	LJ	A	5.9 L	J /	`	5.6 L	J A	3	o u	
Cobalt	6.0	U	193		18.0 1	ر ا ا	A	6.0	U	100	6.0	U		6.0 U			6.0 U		6	0 U	
Copper	4.3	L	J	Α	28.8		1	6.3	LJ	Α	8.5	LJ	A	7.4 L	3		16.2 L	J A	5	3 L J	A
Iron	55.3	L	J	A	13700	J	C	65.8	LJ	Α	204]	C	72.9 L	J	V	3270	1 C	64	2 L J	A
Lead	1.4	L	J	ACD	8.7	J	BCD	1.0	UJ	CD	1.0	UJ	CD	1.0 U	1 (D	1.7 L	JA	.D 1	2 L J	AC
Magnesium	64300		J	E	68400			64900]]	E	79500			77100	J E		69600		7080	0 1	E
Manganese	33.7				3540			2010			87.8			9.6 L	3		876	}	13	0	
Mercury	0.20	U		н	0.20 1	ונ	H	0.20	וט	H	0.20	บ	H	0.20 U	F	1	0.20 U	H	0.2	0 U	H
Nickel	8.0	U			18.8 1	_]	Α	8.0	U		8.0	U		8.0 U			8.0 U]	8.	0 U	
Potassium	4190	L	J	A	6620	1		4620	L J	A	7880	1		8180			4610 L	J A	454	O L J	A
Selenium	21.4				18.7	J	C	46.0			52.9			47.6			22.6	1 C	21.	6	
Silver	1.0	บ			1.0 t	JJ	C	1.0	U		1.0	UJ	C	1.0 U			1.0 U	J C		ט ס	i
Sodium	148000		J	E	133000			132000	J	E	154000			150000	J E	:	132000		13800		E
Thallium	2.0	U	J	CD	2.0 t	1 1	CD	2.0	n 1	CD	2.0	U	CD	2.0 U	1 0	:D	2.0 U	1 C) 2.	0 0 1	CD
Vanadium	6.0	U			39.7 I	J	Α	6.0	U			U		6.0 U			10.8 L	J A		0 U	
Zinc	7.4	L	J	AB	74.1			8.6	LJ	A	82.3			62.6			30,3		12.	1 L J	AB
		14 8 W																			

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter. IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

D1, D2, etc.-Field Duplicate Pairs
FB-Field Blank, EB-Equipment Blank, TB-Travel Blank, BG-Background
CRDL-Contract Required Detection Limit

Low Concentration Water Samples

SDG: MYJ101

for RAS Metals (total & dissolved

ANALYTICAL RESULTS TABLE 1A

Case No.: 18134 Memo #01

Site: Waste Disposal, Inc.

Lab.: American Analytical & Technical Services (AATS)

Reviewer: Jack D. Sheets, ESAT/ICF Technology, Inc.

Date: August 18, 1992

Concentration in ug/L

Analysis Type:

Collection Date	5-12-92			5-12-92				5-12-92			5-12-92			5-12-92			5-12-92				
Sample Location	GW-24			GW-24				GW-28			GW-28			GW-26			GW-26			ł	
Sample I.D.	MYJ117			MYJ118				MYJ119			MYJ120			MYJ121			MYJ122			Lab Blank	
Metals Type	Total			Dissolved	1			Total			Dissolve	d		Total			Dissolved			ĺ	
Parameter	Result	Val	Con	Result	V	al C	OID	Result	Va	Com	Result	V	Com	Result	Val	Соп	Result	Va	Com	Result	Val C
Aluminum	104 T	J		104	U			13200			104	U		2170			104 U			104 U	5 4
Antimony	16.0 t	J		16.0	U			16.0	U		16.0	U		16.0 L	J		16.0 U	Ī		16.0 U	
Arsenic	6.0 t	j J	CD	6.0	U J	C		6.5	L J	AC	6.0	ון ט	CD	6.0 t	J J	C	6.0 U	1	CD	6.0 U	J 1
Barium	23.8 L	.] J	AC	24.3	LJ	A		201	J	C	30.6	LJ	Α	108 L	, J	AC	26.0 L	J	Α	16.0 U	
Beryllium	1.0 U	,		1.0	บ			1.2	L J	A	1.0	U		1.1 L	, J	A	1.0 U			1.0 U	
Cadmium	2.0 l	J		2.0	U			2.0	U		2.0	U		2.0 U	J		2.0 U			2.0 U	
Calcium	205000			221000	J	E		25300			245000	13	E	243000			242000	J	E	596 U	
Chromium	3.1 L	.]	Α	3.8	L J	A		21.6			3.7	LJ	Α	6.6 L	J	Α	3.0 U			3.0 U	
Cobalt	6.0 €	7		6.0 1	υ			12.7	LJ	A	6.0	บ	150.25	6.0 U	1		6.0 U			6.0 U	
Copper	5.4 L	,]	Α	5.6	LJ	A		60.8			6.6	LJ	A	14.1 L	, J	A	5.5 L	J	Α	4.0 U	
ron	106	J	C	63.2	L J	A		17200	J	C	73.9	LJ	A	3570	J	C	68.5 L	J	A	13.5 L	J A
Lead	1.3 L	.]	ACD	1.1	LJ	A	CD	11.1	J	CF	1.5	LJ	ACD	2.8 L	J	ACD	1.0 U	J	CD	1.0 U	
Magnesium	59900			63900	J	E		82700			74300	J	E	71400			70200	J	E	695 U	
Manganese	8.3 L	J	A	7.4 1	r j	A		733		1	14.8	LJ	Α	546		1	19.4			2.0 U	
Mercury	0.20 t	J	н	0.20	u	H		0.20	บ	H	0.20	บ	H	0.55		н	0.22		H	0.20 U	H
Nickel	8.0 t	J		8.0 1	U			29.4	L J	A	8.0	U	22	12.5 L	J	Α	8.0 U			8.0 U	
Potassium	3370 L	, J	A	3570 1	r J	A	30 30	7550			5200			4940 L	J	A	4180 L	3	A	787 U	
Selenium	18.3	J	С	53.7	J	F		10.5	J	F	28.0			32.1	J	C	11.9	J	F	3.0 U	
Silver	1.0 U	ון	C	1.0 (U			1.0	UJ	C	1.0	บ		1.0 U	J	С	1.0 U			1.0 U	
Sodium	118000			125000	J	E		141000			140000	J	E	142000			142000	J	E	1019 U	
Challium	2.0 t) J	CD	2.0 1	UJ	C	D	2.0	U J	CD	2.0	UJ	CD	2.0 U	J	CD	2.0 U	J	CD	2.0 U	
Vanadium	6.0 U	ı	I consider	6.0	ט			50.0			6.0	υ		10.7 L	J	A	6.0 U			6.0 U	
Zinc	24.7			19,5 1	LJ	A	BC	101		i 🔻	22.5	1	В	23.8			10.7 L	J	AB	4.0 U	

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter. IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank, BG-Background

CRDL-Contract Required Detection Limit

Case No.: 18134 Memo #01

Site: Waste Disposal, Inc.

Lab.: American Analytical & Technical Services (AATS)

Reviewer: Jack D. Sheets, ESAT/ICF Technology, Inc.

Date: August 18, 1992

Analysis Type:

Low Concentration Water Samples

for RAS Metals (total & dissolved

SDG: MYJ101

. - .

Concentration in ug/L

Sample Location Sample I.D.	IDL			CRDL																			
Parameter	Result	Val	Com	Result	Va	Com	Resul	t	Val	Сош	Rea	ult	Val	Com	Re	sult	V	Con	n Result	Va	Соп	Result	Val Cor
Aluminum	104			200																			
Antimony	16.0			60.0]					1]]]
Arsenic	6.0			10.0			1.														Hay.	telegi, m	
Barium	16.0			200			·]]	
Beryllium	1.0			5.0							5.0						4						
Cadmium	2.0			5.0]																	
Calcium	596			5000																			1.1
Chromium	3.0			10.0										l			. L	.	1]	
Cobalt	6.0			50.0														1					
Copper	4.0			25.0																			
ron	12.0			100																			
_cad	1.0			3.0					35.5.6		50000000000000000000000000000000000000			DATASSAS	en ann an an ann an an an an an an an an						10.000.000.000	enst Jápász soppopopopó szereszt	
Magnesium	695			5000														1					1 1
Manganese	2.0			15.0	00/400		50000000000000000000000000000000000000	1 2 0000		curso po	Pulinadeus das	9875 J. J. J. G. 1863 F		aa yadqeesi	endadanováni.	e-e-e		0. 40000.00		10016-200000	tveskooses :		- 100400110101000000
Mercury	0.20			0.20		344								:C7									
Nickel	8.0	Lucius de la constante de la c	prengres d	40.0	99000	A James	1963 2010 (4.7.)	s Marienton.	na e y .	1.00	Participants	1858/103/88618		lara.a	raja sirina	< 0000000488			egya waz ji bibi Mbaccacaini	C 200 1 400 0 0	Markanana.	Internacional de la company	
Potassium	787			5000				1 : (\$1)	Mai											1			
Selenium	3.0	10,494		5.0	100	n, where	usenn ne	8 6/13 JV4 6	yv		1,985.71399		17488	never, ric	1, 545	4.5459.8498.8	1600			-1152	80,33,48	a waa aa aa aa aa aa aa aa aa aa aa aa a	181.588
Silver	1.0			10.0		4-13-13		Valence.		drii.				\$0,71	Line								
Sodium	1019	and i	okanin i	5000	100	117 (8/4)	B 9 128 424	i Substitution	81.8	88 850 m 3	A (80) (AA)			1 8 8 6 1 1	i, jedaja	2 13 K 1988	35,410.2	1	** C15. 357 F3888000	1000 (1901)	878 J.	\$68658.48885508970.111	
Challium	2.0			10.0						BRAT.						7 - 10 0000 000 7 - 10 10 10 000		1000					
Vanadium	6.0		97367	50.0		1,800sv	Hudagalan da Sa	Jes estrat	1 77	4.1	tali o mob	ermer e.	i ga		3790	NEWS 35	394 3 986	100	40 10 45 A 6 - 335 CH39 PG			25.7050487879386	
Zinc	4.0			20.0			dimyat 16	Astronomic Control		10.4								1					
8888888 100 jiros selen kirinin ili ili ninin ili					1			1,0			in the second								I a substitution	ere dang	erge i		

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter. IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

Case No.: 18134 Memo #02

Site: Waste Disposal, Inc.

Lab.: American Analytical & Technical Services (AATS)

Reviewer: Jack D. Sheets, ESAT/ICF Technology, Inc.

Date: August 18, 1992

Analysis Type:

Low Concentration Water Samples

for RAS Metals (total & dissolved

SDG: MYJ123

Concentration in ug/L

Collection Date	5-13-92			5-13-92			5-12-92			5-12-92			5-12-92			5-12-92		5-12-92	
Sample Location	GW-30			GW-30			GW-12			GW-12			GW-17			GW-17		GW-32	
Sample I.D.	MYJ123			MYJ124			MYJ125	D1		MYJ126	D2		MYJ127 D	3		MYJ128 D4	l	MYJ129 EB	
Metals Type	Total			Dissolve	ed		Total			Dissolve	đ		Total			Dissolved		Total	
Parameter	Result	Va	Com	Result	Va	Соп	Result 🏲	Va	Con	Result	V	al Con	Result	Va	l Con	Result	Val Con	Result	Val Co
Aluminum	111	LJ	Α	104	บ		3360		G	104	U		1260		G	104 U		104 U	
Antimony	26.7	LJ	Α	16.0	ט		16.0	U		16.0	U		16.0 1	ט		16.0 U		16.0 U	
Arsenic	6.0	U		6.0	UJ	C	6,0	UJ	C	6.0	נוט	CD	6.0 1	IJJ	C	6.0 U	1 C	6.0 U	J CD
Barium	40.5	LJ	Α	40.0	LJ	A	96.5	LJ	AC	21.9	LJ	Α	74.3 1	LJ	AC	20.7 L	J A	16.0 U	J C
Beryllium	1.0	ט		1.0	บ		1.0	U		1.0	บ		1.0 (וט		1.0 U		1.0 U	
Cadmium	2.0	บ		2.0	U		2.0	U		2.0	U		2.0 1	ט	7,000	2.0 U		2.0 U	
Calcium	159000			162000	J	E	271000			276000]	E	220000			235000	J E	596 U	
Chromium	5.2	LJ	Α	3.8	LJ	A	10.8			6.0	LJ	A	4.7 I]]	Α	3.0 L	J A	3.0 U	
Cobalt	6.0	ש		6.0	บ		6.0	บ	315	6.0	U		6.0 1	y		6.0 U		6.0 U	
Copper	4.5	LJ	Α	4.0	U		13.9	LJ	A	4.7	LJ	A	9.3 I	J	A	4.9 L	JA	4.0 U	Service Market
Iron	201			42.5	L J	A	4860	j j	CG	68.4	LJ	A	1840	1	CG	54.3 L	JA	12.0 U	ı c
Lead	3.6	J	BCD	1.5	LJ	ABCD	2.5	LJ	ACD	1.0	UJ	CD	1.9	. 1	ACD	1.0 U	J CD	2.7 L	J AC
Magnesium	42900			43500	J	E	85200			85300	J	E	70600		.	74100	J E	695 ป	
Manganese	34.9		Frank C	7.8	1.11	A	271		G	7.6	LJ	A	263	1.000		38.5	100000 1000000	2.0 U	
Mercury	0.20	וט	н	0.20		Н	0.20	U	H	0.20		Н	0.20 t	3	н	0.20 U	н	0.20 U	H
Nickel	1	U	1	8.0			8.0	1		8.0		100	8.0 T			8.0 U		8.0 U	
Potassium	4340	LJ	A	4110	- 1	A	5620			5020			4560 I	J	A	4660 L	JA	787 U	
Selenium	26.2	J	CF	30.3	_		49.5			42.9			26.2	J	С	25.2	J F	3.0 U	J C
Silver	1.0	11 1	C	1.0	TI .			บ่า	C	1.0	υ		1.0 t	1 1	c	1.0 U		1.0 U	1
Sodium	85400	7 5		86300	1	E	141000			145000	J	E	162000	7 78.7		173000	J E	2630 L	and the second
Thallium	1	UJ	CD		บ่า	CD	2.0	uli	CD	2.0	נוט	CD	2.0 1	1 1	CD	2.0 U	1 1	2.0 U	1
Vanadium	6.0	II		6.0	100		15.5	10 1 2 1	A	6.0	- 1		7.8 1	erick english	A	6.0 U	TUES (57.776)	6.0 U	
Zinc	11.7	1. 1	A		r l	A	20.1			6.1		AB	17.7 1		A	8.6 L	J AB	4.0 U	
					~ *	1**		ut lutie	12.3		a •				1			perendant VIASANT H	
		5. 1. 100 cm 5. 10 100 50 cm							less.			1.00			1				
essadas de la companya de la company		S. 1993				100	pastudisalum nyin 315.			00.8899995 3-7.893 s	da Ni			e (0000)	1			Maranian di Persenastra (1718)	

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter. IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

D1, D2, etc.-Field Duplicate Pairs
FB-Field Blank, EB-Equipment Blank, TB-Travel Blank, BG-Background
CRDL-Contract Required Detection Limit

Case No.: 18134 Memo #02

Site: Waste Disposal, Inc.

Lab.: American Analytical & Technical Services (AATS)

Reviewer: Jack D. Sheets, ESAT/ICF Technology, Inc.

Date: August 18, 1992 Analysis Type:

Low Concentration Water Samples

for RAS Metals (total & dissolved

SDG: MYJ123

Concentration in ug/L

Collection Date	5-12-92				5-13	-92			5-13-	92			5-13	-92			5~	13-92	2]		
Sample Location	GW-32				GW-3	3			GW-33				GW-3	4			GW	-34								
Sample I.D.	MYJ130	EB			MYJ1	31	EB		мул13	2 I	ЕΒ		MYJ1	33	FB		MY	J134	FE	1		Lab Blank		IDL		
Metals Type	Dissolve	be			Tota	1			Disso	lved	1		Tota	1			Di	ssolv	/ed			ŀ				
Parameter	Result		Val	Com	Ra	sult	V	Con	Resu	lt	Va	Cor	n Re	sult	V	al Cor	n 1	Result		Val	Соп	Result	Val Con	Result	V	d Con
Aluminum	104	- 1				104	-			104	_			104					4 U			104 1	1 1	104		
Antimony	16.0	- 1				16.0	- 1			16	- 1			16	- 1				6 U			16.0 1	1 1	16.0		
Arsenic	6.0	U	j :	C			UJ	CD		6.0	נוט	C		6.0	UJ	C		6.	0 U	J	C	6.0 1	ון	6.0		1
Barium	16.0	U				16.0	ΠĺΊ	C	1	6.0	U			16.0	UJ	C			0 U			16.0 1	ן נ	16.0		
Beryllium	1.0	U				1.0	บ			1.0	U			1.0	U			1.	oυ			1.0 1	ון	1.0		
Cadmium	2.0	U				2.0	U	ŀ		2.0	บ			2.0	บ			2.	o U			2.0 1	ן	2.0		
Calcium	596	U			200	596	U			596	ט י		1	596	บ			59	6 ป			596 1	J	596		
Chromium	3.0	U				3.0	U			3.0	U			3.0	บ			3.	0 U			3.0 1	ו	3.0		
Cobalt	6.0	U	1136			6.0	U			6.0	U		La H	6.0	U		, last	6.	o U			6.0 1	3	6.0		
Copper	4.0	U			, y - 2000 - 1 - 1	4.0	U	1	N. Marina san	4.0	υ			4.0	U			4.	οU	De 1 (0)	toroscopi.	4.0 t	J	4.0		
Iron	12.0	U				12.0	UJ	c	1	2.0	U	1		12.0	UJ	C	100	12.	O U			12.0 (ıl I	12.0		
Lead	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L	J	ACD		3.4	J	ВС	S. 605-A101-LOS. 11	3.6	J	BC		3.2	J	BC	in.	3.	n Haydala		BC	1.0 t		1.0		1.000 (0.000)
Magnesium	695	1				695	ש		1	695	וט	100		695	υ			69	5 U			695 t	ıl l	695		
Manganese	2.0	- 1.	1973.11	. er (er. 1	r a nement :	2.0			11,779,000,000	2.0	3 1 1 1 1		Afgener, nice :	2.0	1	61,000	9 \$5000000	() () () () () () () ()	0 U	9815,811	644-ACSCS	2.0 t	10 KG (64) P 16060 161	2.0		14.752223
Mercury	0.20		i gai	н		0.20	- 1	Н		.20		H	342.838.63	0.20	- 1	н	100		ง บ		н	0.20 t	1. I	0.20	H	
Nickel	8.0	- 1	oras,	.T.		8.0	1			8.0		1	1.000	8.0	- 1 A 3 C	42			O U	gripes,	1771.3°	8.0 T	4 1 1 1 1 1 1 1 1 1 1 1	8.0		i di nar
Potassium	787	- 1	140		ry, i	787	t t		B.	787	1		1.66.836	787	I		100		7 U			787 T		787		
Selenium	3.0	- 1	èria.	18/96/26			UJ	C		3.0	- 1		1 (4)	3.0		c	Fig. 3.	A 200 F	O U		182.57	3.0 ₹	to the second second	3.0		1.000
Silver	1.0	J.			013496		U J	c	1	1.0	T. I	livet.		1.0		c	1		U		Shah Shah Pabbook	1,0 (i l	1.0		
Sodium	1820		ī	A	irtus Atrit	1790		A	100	860		A	1 717 8	1760		A			1977 C	J	A	1019 (1 3 1 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1019.0	d allerin	
Thallium	2.0	J		c		2.0	1 .	c	1	2.0		c		2.0		c	1		บั	1	C	2.0 t	Janes Ja	2.0	•	1.15
Vanadium	6.0	- 1		~	i nel si	6.0			201	6.0	-1			6.0		١	1		U		73	6.0 t		6.0		
Zinc	25. 5	- 1	i e.i.	В		4.0		1	1	4.0				4.0	- 1		1500		บิ	0.50		4.0 t	. 1	4.0		1
	د. د.			2		7.0	١	180	 	7.0	J			7,0	۱ ا				· · ·	3.41				7.0		
				1500 1910			. R. P. L. V	1	185 - Par \$20s	etable.		100	10000	1.5(3)49	1	1	la.c.									
		1			V 6700			1				1		事制 智			100			100.1	P\$ 34					17.75

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank, BG-Background

CRDL-Contract Required Detection Limit

Case No.: 18134 Memo #02

Site: Waste Disposal, Inc.

Lab.: American Analytical & Technical Services (AATS)

Reviewer: Jack D. Sheets, ESAT/ICF Technology, Inc.

Date: August 18, 1992

Analysis Type:

Low Concentration Water Samples

for RAS Metals (total & dissolved

SDG: MYJ123

Concentration in ug/L

Antimony 66 Arsenic 1 Barium 20 Beryllium 5. Cadmium 5. Calcium 500 Chromium 10. Cobalt 50. Copper 25. Iron 10 Lead 3. Magnesium 500 Manganese 15. Mercury 0.2 Nickel 40. Potassium 500 Selenium 5. Silver 10. Sodium 500	00 60 10 00 5.0 5.0 00	Val	Сош	Result		Va	Com	Resu	dt	Val	Com	Resu	it	Val	Com	Resu	lt	Val	Сош	Rosu	ılt	Val	Com	Result		Val Co
Antimony 6 Arsenic 1 Barium 20 Beryllium 5 Cadmium 5 Calcium 500 Chromium 10 Cobalt 50 Copper 25 Iron 10 Lead 3 Magnesium 500 Manganese 15 Mercury 0.2 Nickel 40 Potassium 50 Selenium 5 Silver 10 Sodium 500	60 10 00 5.0 5.0 00 0.0								en 19			1			- 1			1		1				ļ		
Arsenic 1 Barium 20 Beryllium 5. Cadmium 5. Calcium 500 Chromium 10. Cobalt 50. Copper 25. Iron 10 Lead 3. Magnesium 500 Manganese 15. Mercury 0.2 Nickel 40. Potassium 500 Selenium 5. Silver 10. Sodium 500	10 00 5.0 5.0 00 0.0								88 T B			ľ								i						
Barium 20 Beryllium 5. Cadmium 5. Calcium 500 Chromium 10. Cobalt 50. Copper 25. Iron 10 Lead 3. Magnesium 500 Manganese 15. Mercury 0.2 Nickel 40. Potassium 50 Selenium 5. Silver 10. Sodium 500	00 5.0 5.0 00 0.0						10		88 3		1				1					· 1						
Beryllium 5. Cadmium 5. Calcium 500 Chromium 10. Cobalt 50. Copper 25. Iron 10. Lead 3. Magnesium 500 Manganese 15. Mercury 0.2 Nickel 40. Potassium 500 Selenium 5. Silver 10. Sodium 500	5.0 5.0 00 0.0 0.0							1																		
Cadmium 5. Calcium 500 Chromium 10. Cobalt 50. Copper 25. Iron 10 Lead 3. Magnesium 500 Manganese 15. Mercury 0.2 Nickel 40. Potassium 5. Selenium 5. Silver 10. Sodium 500	5.0 00).0).0							İ																		
Calcium 500 Chromium 10. Cobalt 50. Copper 25. Iron 10 Lead 3. Magnesium 500 Marganese 15. Mercury 0.2 Nickel 40. Potassium 500 Selenium 5. Silver 10. Sodium 500	00).0).0																					1				
Chromium 10. Cobalt 50. Copper 25. Fron 10 Lead 3. Magnesium 500 Manganese 15. Mercury 0.2 Nickel 40. Potassium 500 Selenium 5. Silver 10. Sodium 500).0).0						j]												Lare trans				l		
Cobalt 50. Copper 25. ron 10. .ead 3. Magnesium 500 Manganese 15. Mercury 0.2 Nickel 40. Potassium 500 Selenium 5. Silver 10. Godium 500	0.0		- 1																							
Copper 25. ron 10 .cad 3. Magnesium 500 Manganese 15. Mercury 0.2 Nickel 40. Potassium 500 Selenium 5. Silver 10. Godium 500				and the second second	or a														er e u	r no necessary	La MANA SASSA			lacarine assert		
ron 10 Lead 3. Magnesium 500 Manganese 15. Mercury 0.2 Nickel 40. Potassium 500 Selenium 5. Silver 10. Sodium 500		100					1.5																			
Lead 3. Magnesium 500 Manganese 15. Mercury 0.2 Nickel 40. Potassium 500 Selenium 5. Silver 10. Sodium 500		10.0555				oner	1.0.000.00	10000. + 100.00.		1.5		njaryanagi	2.020.000.00		a sea a	3 1001 PS 001006	20, 2,	1913/04	100000000	K 200451 0000 21451	000000000000000000000000000000000000000		2309000	kurtonetreestanwoots	Section 1	-000 91 0000000
Magnesium 500 Manganese 15. Mercury 0.2 Nickel 40. Potassium 500 Selenium 5. Silver 10. Sodium 500	2 1 1 1 2 2 2 3						\$35																		~	
Manganese 15. Mercury 0.2 Nickel 40. Potassium 500 Selenium 5. Silver 10. Sodium 500		20000	20-20-20-20-20	oninanini akk	arakaran 18.			2000000000000	-xunoddddna (95		1000 to 11	rius 4600000000		1564 of 3	duddesse k	anco e terrose	10010000000000	orenen-	otomores.	20/14/04/04/05/000	e-New (2004) 100		0000000	kasa masasasasas sumuu	: : 1.55 ar	an a l asawa
Mercury 0.2 Nickel 40. Potassium 500 Selenium 5. Silver 10. Sodium 500	2.77																									
Nickel 40. Potassium 500 Selenium 5. Silver 10. Sodium 500		350-		salawan da wa n	11 349 5 51			a integral i	7 - N. 1818.		4 5.8	a in teached at the	\$141.83a F	divisió d			-0140-480-00	196.561	96686	1944 1555555555	85:1911-1980-1980		idda.	1111 E 1813856 A	.	
Potassium 500 Selenium 5. Silver 10. Sodium 500																				Y8711111111 - 14731				TO STATE		
Selenium 5. Silver 10. Sodium 500			eg. ·							10.20		Kurtu 1.			25A1	5 55555. · · ·	1 4 635000		100000		202 J. 1866.					
Silver 10. Sodium 500	5,38976				3. + Ps.										-		144								1	
Sodium 500		e.ess k .	1399899	881 F5 VOLGOSO	an de la	526545	Paris e	(1771) <u>(180</u> 1)		1 T. N	i (Ministra)	1954864 Z		3854				19 W.A					574 G			
											1 40 1									H. Anten		200				
Thallium 10.					95 W.ST			eller er er			2,4,5						ir i Virgina	1000	es. :							1:00
Vanadium 50.	nana 20 ili na 1 i																e diffah			970000						
		680 K	1	. Lathir peigr			10000		#850 OFF	ļ.,	180,00		Balan A	9.1										ar (24 gránason).	e di	
line 20.	,.v								Paragoraly:				CATALITA.							375	2C - (SEE)			ar Fear Naid?	Tafa P	1 150
	- 1		1									a parto duar			, J						78.78					

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter. IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank, BG-Background CRDL-Contract Required Detection Limit

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR INORGANIC DATA REVIEW

NO QUALIFIER indicates that the data are acceptable both qualitatively and quantitatively.

- U The analyte was analyzed for but was not detected above the level of the associated value. The associated value is the Instrument Detection Limit (IDL) for waters and the Method Detection Limit (MDL) for soils in all of the analytes except Cyanide (CN) and Mercury (Hg). For CN and Hg, the associated value is the Contract Required Detection Limit (CRDL).
- L Indicates results which fall between the IDL for waters or the MDL for soils and the CRDL. Results are considered estimates and usable for limited purposes.
- J The analyte was analyzed for and was positively identified, but the associated numerical value may not be consistent with the amount actually present in the environmental sample. Results are considered estimates and the data usable for limited purposes. The results are qualitatively acceptable.
- R The analyte was analyzed for, but the presence <u>or</u> absence of the analyte has not been verified. Resampling and reanalysis are necessary to confirm or deny the presence of the analyte. Results are rejected and data are <u>unusable</u> for any purposes.
- UJ A combination of the "U" and the "J" qualifier. The analyte was analyzed for but was not detected above the level of the associated value. The associated value may not accurately or precisely represent the sample detection limit.

Collection Date	Blank Sample #	Associated Samples
5-12-92	MYJ129 (EB)	MYJ101, MYJ107, MYJ115, MYJ117, MYJ119, MYJ121, MYJ125, MYJ127
5-12-92	MYJ130 (EB)	MYJ102, MYJ108, MYJ110, MYJ118, MYJ120, MYJ122, MYJ126, MYJ128
5-13-92 5-13-92	MYJ131 (EB) MYJ132 (EB)	MYJ103, MYJ105, MYJ111, MYJ113, MYJ123 MYJ104, MYJ106, MYJ112, MYJ114, MYJ124
5-13-92	MYJ133 (FB)	
5-13-92	MYJ134 (FB)	

1500

INORGANIC REGIONAL DATA ASSESSMENT

CASE NO. <u>18134 Memo #01 and #02</u>	LABORATORY	<u>America</u>	n Analyt	ical (AATS	<u>) </u>
SDG NO. MYJ101 and MYJ123	_ DATA USER				
SOW <u>3/90</u>	_ REVIEW COMP	LETION D	ATE <u>Au</u>	gust 18, 1	.992
REVIEWER [] ESD [X] ESAT	Reviewer's N	lame <u>Jac</u>	k D, She	ets	
NO. OF SAMPLES 32 WATER	soil	ОТ	HER		
1. HOLDING TIMES	ICP 	AA O	Нg <u>О</u>	Other	
2. CALIBRATION	0	<u>°</u> 0	0		
3. BLANKS	<u> X</u>	<u> </u>	0		
4. ICP INTERFERENCE CHECK SAMPLE	E (ICS) <u>0</u>				
5. LABORATORY CONTROL SAMPLE (LC	CS) <u>0</u>	0	F		
6. DUPLICATE ANALYSIS	_ 0_	0	0_		
7. MATRIX SPIKE ANALYSIS	M	<u>M</u>	0		
8. METHOD OF STANDARD ADDITION ((MSA)	<u>X</u>			
9. ICP SERIAL DILUTION	<u>M</u>				
10. SAMPLE QUANTITATION	0	0	0	district of all little days	
11. SAMPLE VERIFICATION	0	0	0		
12. OTHER QC	0	00	0		
13. OVERALL ASSESSMENT	M	M	0		

Page 1 of 2

O - No problems or minor problems that do not affect data usability.

X - No more than about 5% of the data points are qualified as either estimated or unusable.

M - More than about 5% of the data points are qualified as estimated.

Z - More than about 5% of the data points are qualified as unusable.

F - Not applicable.

INORGANIC REGIONAL DATA ASSESSMENT

CASE NO. <u>18134 Memo #01 and #02</u>	LABORATORY <u>American Analytical (AATS)</u>
SDG NO. MYJ101 and MYJ123	DAȚA USER
SOW <u>3/90</u>	REVIEW COMPLETION DATE August 18, 1992
REVIEWER [] ESD [X] ESAT	Reviewer's Name <u>Jack D. Sheets</u>
NO. OF SAMPLES 32 WATER	SOIL OTHER
TPO ACTION ITEMS:	
TPO ATTENTION ITEMS: A CRDL stand	dard was not analyzed for mercury.
AREAS OF CONCERN: Variable (55.3 t	to 219%) CRDL recoveries were reported for
lead. While the are no criteria	for CRDL recoveries, variable recoveries
indicate analytical problems with	determinations near the detection limit,
) spike levels were incorrect which may cause
	upported by a comparison between total and
	mples with the same location. The results
	the dissolved sample were 3 to 4 times
higher than the same sample result	ts for total metals calculated from the GFAA
curve. If results for both total a	and dissolved metals are generated from the
GFAA calibration curve, the agrees	ment is within acceptable limits. Selenium
	MYJ121 reported on Form 6 cannot be
evaluated due to a difference in	analytical methodologies. The sample and
duplicate sample were analyzed by	MSA and by GFAA calibration curve,
respectively. The same method mus	st be used to evaluate the data, Using
selenium results generated from the	he GFAA calibration curve for both samples,
	Matrix spike results reported for selenium or
	luation of the data due to a difference in
methodologies. The sample result	was obtained from MSA, and the spiked sample
was obtained from the GFAA calibr.	ation curve. The same method must be used
for evaluation of matrix spike re-	sults. If the GFAA calibration curve is used
	spiked sample results, a recovery of 64,8% is
	as used to evaluate the matrix spike results
	um, and silver. Both SDG MYJ101 and SDG
	day. Insufficient or incomplete data forced
	ike results for evaluation of SDG MYJ123.

Page 2 of 2

APPENDIX D DATA VALIDATION REPORTS - AUGUST

ICF TECHNOLOGY INCORPORATED

10/16/92

MEMORANDUM

TO:

Kay Lawrence

Remedial Project Manager

Enforcement Programs Section (H-7-2)

THROUGH:

Roseanne Sakamoto

Environmental Protection Specialist

Quality Assurance Management Section, (P-3-2)

FROM:

Carolyn Studeny

Senior Organic Data Reviewer

Environmental Services Assistance Team (ESAT)

DATE:

October 5, 1992

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region 9 review of the following analytical data:

SITE:

Waste Disposal, Inc.

EPA SITE ID NO:

C1

CASE/SAS NO.:

18609 Memo #03

SDG NO.:

YL326

LABORATORY:

Pacific Analytical, Inc. (PACIF)

ANALYSIS:

RAS Volatiles

SAMPLE NO.:

15 Water Samples (In Case Summary)

COLLECTION DATE:

August 11 through 13, 1992

REVIEWER:

Lisa Hanusiak

ESAT/ICF Technology, Inc.

If there are any questions, please contact Carolyn Studeny at (415) 882-3184.

Attachment

cc: Edward Kantor, EMSL-LV, QAD

Steve Remaley, TPO USEPA Region IX

TPO: []FYI [X]Attention []For Action

11-1

Data Validation Report

Case No.: 18609 Memo #03

Site: Waste Disposal, Inc.

Laboratory: Pacific Analytical, Inc. (PACIF)

Reviewer: Lisa Hanusiak, ESAT/ICF Technology, Inc.

Date: October 5, 1992

I. Case Summary

SAMPLE INFORMATION:

VOA Sample Numbers: YL326 through YL329 and YL331 through YL341

Concentration and Matrix: Low Level Water

Analysis: RAS Volatiles

SOW: 3/90

Collection Date: August 11 through 13, 1992 Sample Receipt Date: August 13 and 14, 1992 Analysis Date: August 20 and 21, 1992

FIELD QC:

Trip Blanks (TB): None

Field Blanks (FB): None

Equipment Blanks (EB): YL340 and YL341

Background Samples (BG): None

Field Duplicates (D1): YL326/YL338

(D2): YL329/YL339

METHOD BLANKS AND ASSOCIATED SAMPLES:

VBLK11: YL326, YL329, YL335, YL336, YL336MS,

YL336MSD, YL338, YL339 and YL340

VBLK12: YL327, YL328, YL331 through YL334, YL337 and

YL341

TABLES:

1A: Analytical Results with Qualifications

12-2

1B: Data Qualifiers

2: Sample Quantitation Limits of Target Compound

List (TCL) Analytes

TPO ATTENTION REQUIRED:

No mass spectral data were submitted for any of the samples. As a result, all positive identifications are considered to be tentative. In addition, no Tentatively Identified Compounds (TIC) were reported for any of the samples.

ADDITIONAL COMMENTS:

This report was prepared according to the EPA draft document, "National Functional Guidelines for Organic Data Review," December, 1990 (6/91 Revision).

 ${\tt MS}$ - ${\tt Matrix}$ Spike; ${\tt MSD}$ - ${\tt Matrix}$ Spike Duplicate

ESAT-QA-9A-7201/L18609M3.RPT

II. Validation Summary

	Acceptable	/Comment
HOLDING TIMES	[Y]	[C]
GC/MS TUNE/GC PERFORMANCE	[Y]	ĹĬ
CALIBRATIONS	(Y)	ĺÌ
FIELD QC	[N]	[A]
LABORATORY BLANKS	[Y]	[]
SURROGATES	[Y]	ĺ
MATRIX SPIKE/DUPLICATES	[Y]	ĹĬ
INTERNAL STANDARDS	[Y]	ĹĬ
COMPOUND IDENTIFICATION	[N]	[B]
COMPOUND QUANTITATION	[Y]	[]
SYSTEM PERFORMANCE	[N]	[BD]

N/A - Not Applicable

III. Validity and Comments

- A. Due to equipment blank contamination problems, the results reported in Table 1A for the following analytes are estimates (J) and usable for limited purposes only:
 - Methylene chloride in sample numbers YL326, YL331, YL332, YL334 and YL336

VOA

 Acetone in sample numbers YL328, YL329, YL331 through YL334, YL336 and YL337

Methylene chloride and acetone were found in equipment blank sample number YL341 at concentrations of 28 and 13 μ g/L, respectively. The results for the samples listed above are considered nondetected and estimated (U,J) and the quantitation limits have been increased, where appropriate, according to the blank qualification rules.

- B. Due to insufficient data, the detected results for the following analytes are considered to be presumptively present (N) and usable for limited purposes only (see Table 1A):
 - Methylene chloride and acetone in sample number YL341
 - Chloroform in sample numbers YL340 and YL341
 - 2-Butanone in sample number YL329
 - Tetrachloroethene in sample number YL332

No mass spectra were submitted for the detected target analytes in any of the samples for this case. Without the mass spectra, the positive identification of target analytes could not be confirmed. The target analytes reported in the samples listed above are considered to be tentatively identified.

C. The 40 CFR 136 technical holding time was not exceeded for any of the samples analyzed. D. All other results are considered valid and usable for all purposes. All other quality control criteria have been met and are considered acceptable.

D-4

Analysis Type: Low Level Water Samples

for RAS Volatiles

TABLE 1A*

Case No.: 18609 Memo #03

Site:

Waste Disposal, Inc.

Lab.:

Pacific Analytical, Inc. (PACIF)

Reviewer: Lisa Hanusiak, ESAT/ICF Technology, Inc.

Date:

October 5, 1992

Concentration in ug/L

Station Location	G.	W -01		GW	-02	GW-	-04	GW-	07	GW-	10	GW-	11	GW-	23
Sample I.D.	Ar3	26 I	D1	YL	327	YL:	328	YL329	D2	Ar3	31	Ar3	32	YL3	33
Compound	Result	Vi	Con	Result	Val Con	Result	Val Com	Result	Val Com	Result	Val Com	Rosult	Val Com	Rosult	Val Co
Methylene chloride	12	נט	A	10	ul l	10 1	J L	10 U		12 U	J A	10 U	JA	10 U	
Acetone	10	()] () (10	1 1	21 U	1.00	29 U	1 1	50 U		16 U	\$1 horse \$10 and	14 U	1 1
Chloroform	10	וט		10	ט	10 1	1 1 .	10 U		10 U		ט 10		10 U	I I
2-Butanone	10	U		10	u I	10 τ	ار	41	N B	10 U		10 U	1	10 U	1 1
Tetrachioroethene	10	U		10	ט	10 t	ון	ט 10		10 U		17	N B	10 U	
						77 - 1 ₃ 6. 1 - 14		\$46 G F							(1)
Station Location	Gr	W-24		GW	-28	GW-	-26	GW−:	30	GW-	12	GW-:	17	GW-	34
Sample I.D.	Y	L334		YL	335	YL.	336	YL33	37	YL338	D1	YL339	D2	YL340	EB
Compound	Result	Vi	1 Соп	Result	Val Com	Result	Val Com	Result	Val Com	Rosult	Val Com	Rosult	Val Com	Result	Val Co
Methylene chloride	10	UJ	A	10	u l	 	JA	10 U	,	10 U		10 U		10 U	
Acetone	 30 00 00 00 00 00 00 00 00 00 00 	บไ	A	10		25 U	J J A	16 U		10 U		10 U		10 U	i an inter
Chloroform	10	บ		10	יו	10 t	J	10 U		10 U		10 U		34	N B
2-Butanone	10	U	artisans a	10	ן	10 U	ן	10 U		10 U	1000000 BOOKS	10 U		10 U	
Tetrachloroethene	10	ש		10 1	u	10 T]	10 U		10 U		10 U		10 U	
ANIMATINA NO DE PRINCIPALITA DE PRINCIPALITA DE LA CONTRACTOR DE PRINCIPALITA				1		1	i I		1 1 1		1		1 1		l l

^{*}The other requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank

BG-Background Sample

Analysis Type: Low Level Water Samples

for RAS Volatiles

TABLE 1A*

Case No.: 18609 Memo #03

Site: Waste Disposal, Inc.

Lab.: Pacific Analytical, Inc. (PACIF)

Reviewer: Lisa Hanusiak, ESAT/ICF Technology, Inc.

Date: October 5, 1992

Concentration in ug/L

Station Location Sample I.D.	GW- YL341	-		Method VBLK		ık	Method VBLK		ank	CRQ	L									
Compound	Result	Val	Соп	Result	Val	Com	Result	٧a	l Com	Result	Va	Com	Result	Va	Com	Rosult	Val Co	n Result	Va	Con
Methylene chloride Acetone	28 13	N I	30 M	10 U 10 U	1 1		10 U 10 U		- 1.50	10 10					10000000000000000000000000000000000000					
Chloroform 2-Butanone		N I	1	10 U 10 U			10 U 10 U	1111 1111 11111		10 10										
Tetrachloroethene	10 U			10 U			10 U			10	S.									
											8.67									
																				10 A
Station Location Sample I.D.																				
Compound	Result	Val (Соп	Rosult	Val	Com	Result	Va	Com	Result	Val	Com	Rosult	Val	Com	Rosult	Val Cor	Rosult	Val	Соп
											•									
								1 1 1 1												
					00000	ecord Y														

*The other requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank

BG-Background Sample

TABLE 1B DATA QUALIFIERS

NO QUALIFIERS indicates that the data are acceptable both qualitatively and quantitatively.

- U Indicates that the compound is not detected above the concentration listed.
- L Indicates results which fall below the Contract Required Quantitation Limit. Results are considered estimates and usable for limited purposes.
- J Results are estimated and the data are valid for <u>limited</u> purposes. The results are qualitatively acceptable.
- N Presumptive evidence of the presence of the material. Compound identification is considered to be tentative. The data are usable for limited purposes.
- R Results are rejected and data are invalid for all purposes.

TABLE 2 Sample Quantitation Limits

Case No.: 18609 Memo #03

Waste Disposal, Inc. Site:

Laboratory: Pacific Analytical, Inc. (PACIF)

Reviewer: Lisa Hanusiak

ESAT/ICF Technology, Inc.

October 5, 1992 Date:

Volatile Compounds	Units, ug/L		Q	<u>C</u>
Chloromethane	10			
Bromomethane	10			
Vinyl chloride	10			
Chloroethane	10			
Methylene chloride	10	Ç		
Acetone	10			
Carbon disulfide	10			
1,1-Dichloroethene	10			
1,1-Dichloroethane	10			
1,2-Dichloroethene (Total) 10			
Chloroform	10			
1,2-Dichloroethane	10			
2-Butanone	10			
1,1,1-Trichloroethane	10			
Carbon tetrachloride	10			
Bromodichloromethane	10			
1,2-Dichloropropane	10			
1,1,2,2-Tetrachloroethane	10			
trans-1,3-Dichloropropene	10			
Trichloroethene	10			
Dibromochloromethane	10			
1,1,2-Trichloroethane	10			
Benzene	10			
cis-1,3-Dichloropropene	10			
Bromoform	10			
2-Hexanone	10			
4-Methyl-2-pentanone	10			
Tetrachloroethene	10			
Toluene	10			
Chlorobenzene	10			
Ethylbenzene	10			
Styrene	10			
Xylenes (Total)	10			

Q - Qualifier
C - Comment

TABLE 2 (Continued)

To calculate the sample quantitation limits, multiply CRQL by the following factors:

Sample No.	<u>Volatiles</u>
YL326	1.0
YL327	1.0
YL328	1.0
YL329	1.0
YL331	1.0
YL332	1.0
YL333	1.0
YL334	1.0
YL335	1.0
YL336	1.0
YL337	1.0
YL338	1.0
YL339	1.0
YL340	1.0
YL341	1.0
Method Blanks	1.0

CASE NO. <u>18609 Memo #03</u> I	LABORATORY	<u>Pacifi</u>	c Analyt	ical, Inc.
SDG NO. YL326	DATA USER			
SOW F	REVIEW COMPI	ETION DA	TE <u>Octo</u>	ber 5, 1992
NO. OF SAMPLES 15 WATER	SOIL _	0	THER	
REVIEWER [] ESD [X] ESAT [] OTH	HER, CONTRAC	T/CONTRA	CTOR	
	VOA	BNA	PEST	OTHER
1. HOLDING TIMES	0			
2. GC-MS TUNE/GC PERFORMANCE				
3. INITIAL CALIBRATIONS	_ 0_			
4. CONTINUING CALIBRATIONS	0			
5. FIELD QC	<u>X</u>			
6. LABORATORY BLANKS	0			
7. SURROGATES	0			
8. MATRIX SPIKE/DUPLICATES	0_			
9. REGIONAL QC ("F" - not applicable	e) <u>F</u>			
10. INTERNAL STANDARDS	0			
11. COMPOUND IDENTIFICATION	<u> </u>			
12. COMPOUND QUANTITATION	0			
13. SYSTEM PERFORMANCE	<u> </u>			
14. OVERALL ASSESSMENT	<u>x</u>			
 0 - No problems or minor problems th X - No more than about 5% of the dat or unusable. M - More than about 5% of the data p Z - More than about 5% of the data p 	a points are oints are q	e qualifi ualified	ed as ei as estin	ther estimated
TPO ATTENTION ITEMS: No mass spectra samples. As a result, all positive tentative,		ions are	consider	

Please indicate if the laboratory did not comply with the contract, and/or if the SAS request was not adequate.

flagged at fatterively identified as no mass spectra were included in

Comments

data package.

ICF TECHNOLOGY INCORPORATED

OCT 6 1 1992

MEMORANDUM

TO:

Kay Lawrence

Remedial Project Manager

Enforcement Programs Section (H-7-2)

THROUGH:

Roseanne Sakamoto

Environmental Protection Specialist

Quality Assurance Management Section, (P-3-2)

FROM:

Carolyn Studeny

Senior Organic Data Reviewer

Environmental Services Assistance Team (ESAT)

DATE:

September 25, 1992

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region 9 review of the following analytical data:

SITE:

Waste Disposal, Inc.

EPA SITE ID NO:

C1

CASE/SAS NO.:

LV2S61 Memo #02

SDG NO.:

YL326

LABORATORY: ANALYSIS:

Region IX, Las Vegas RAS Semivolatiles

SAMPLE NO.:

15 Water Samples (In Case Summary)

COLLECTION DATE:

August 11 through 13, 1992

REVIEWER:

Lisa Hanusiak

ESAT/ICF Technology, Inc.

If there are any questions, please contact Carolyn Studeny at (415) 882-3184.

Attachment

cc: Brenda Bettencourt, Chief, Laboratory Support Section (P-3-1)

TPO: [X]FYI

[]Attention

[]For Action

ESAT-QA-9A-7024/LLV2S612.RPT

11-12

Data Validation Report

Case No.: LV2S61 Memo #02
Site: Waste Disposal, Inc.
Laboratory: Region IX, Las Vegas

Reviewer: Lisa Hanusiak, ESAT/ICF Technology, Inc.

Date: September 25, 1992

I. <u>Case Summary</u>

SAMPLE INFORMATION:

BNA Sample Numbers: YL326 through YL329 and YL331 through YL341

Concentration and Matrix: Low Level Water

Analysis: RAS Semivolatiles

SOW: 3/90

Collection Date: August 11 through 13, 1992 Sample Receipt Date: August 13 and 14, 1992 Extraction Date: August 15 and 17, 1992

Analysis Date: August 20 and 24, 1992

FIELD QC:

Trip Blanks (TB): None Field Blanks (FB): None

Equipment Blanks (EB): YL340 and YL341

Background Samples (BG): None

Field Duplicates (D1): YL326/YL338 (D2): YL329/YL339

METHOD BLANKS AND ASSOCIATED SAMPLES:

WBLK1: YL327, YL328, YL331, YL332, YL334, YL337 and

YL341

WBLK2: YL326, YL326MS, YL326MSD, YL329, YL333,

YL335, YL336 and YL338 through YL340

TABLES:

1A: Analytical Results with Qualifications

1B: Data Qualifiers

1C: Tentatively Identified Compounds

2: Sample Quantitation Limits of Target Compound

List (TCL) Analytes

16

ADDITIONAL COMMENTS:

This report was prepared according to the EPA draft document, "National Functional Guidelines for Organic Data Review," December, 1990 (6/91 Revision).

MS - Matrix Spike; MSD - Matrix Spike Duplicate

ESAT-QA-9A-7024/LLV2S612.RPT

II. Validation Summary

BNA Acceptable/Comment

HOLDING TIMES	[Y]	[B]
GC/MS TUNE/GC PERFORMANCE	[Y]	[]
CALIBRATIONS	[Y]	[]
FIELD QC	[Y]	[]
LABORATORY BLANKS	[N]	[A]
SURROGATES	[Y]	[]
MATRIX SPIKE/DUPLICATES	[Y]	[]
INTERNAL STANDARDS	[Y]	[]
COMPOUND IDENTIFICATION	[Y]	[]
COMPOUND QUANTITATION	[Y]	[]
SYSTEM PERFORMANCE	[Y]	[C]

N/A - Not Applicable

III. Validity and Comments

- A. Due to laboratory contamination problems, the results reported in Table 1A for the following analytes are estimates (J) and usable for limited purposes only:
 - Butylbenzylphthalate in sample number YL329
 - bis(2-Ethylhexyl)phthalate in sample numbers YL329, YL334 and YL337

Although not detected in any of the method blanks or equipment blanks, phthalates have historically been found as common laboratory contaminants. It is the opinion of the reviewer that the butylbenzylphthalate and bis(2-ethylhexyl)phthalate found in the samples listed above are artifacts.

The results for the samples listed above are considered nondetected and estimated (U,J) and the quantitation limits have been increased, where appropriate, according to the blank qualification rules.

- B. The 40 CFR 136 technical holding times were not exceeded for any of the samples analyzed.
- C. All other results are considered valid and usable for all purposes. All other quality control criteria have been met and are considered acceptable.

y-14

Case No.: LV2S61 Memo #02

Site: Waste Disposal, Inc.

Lab.: Region IX, Las Vegas

Reviewer: Lisa Hanusiak, ESAT/ICF Technology, Inc.

Date: September 25, 1992

Analysis Type: Low Level Water Samples

for RAS Semivolatiles

Concentration in ug/L

Station Location Sample I.D.	GW- YL326		GW-0 YL32		GW- YL3		G W - YL329		GW-10 YL331	GW-11 YL332	GW-23 YL333
Compound	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result Val C	om Result Val Con	Result Val Com
Butylbenzylphthalate bis(2-Ethylhexyl)phthalate	10 U 10 U		10 U 10 U		10 U 10 U	1 1 1	10 U 11 U	1 1	10 U	10 U 10 U	10 U 10 U
							T .				
	San transfer		. * * .			1.					
	ulija t				<u> </u>						
Station Location Sample I.D.	GW-:		GW-2 YL33	_	GW-	_	GW- YL3		GW-12 YL338 D1	GW-17 YL339 D2	GW-32 YL340 EB
Compound	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result Val C	om Result Val Com	Result Val Com
Butylbenzylphthalate bis(2-Ethylhexyl)phthalate	10 U 10 U		10 U 10 U		10 U		10 U 10 U	1 4 1 4 1	10 U	10 U	10 U
							nden i Sada — Iz	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
								age Science Page 1999			

^{*}The other requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank

BG-Background Sample

Case No.: LV2S61 Memo #02

Site: Waste Disposal, Inc.

Lab.: Region IX, Las Vegas

Reviewer: Lisa Hanusiak, ESAT/ICF Technology, Inc.

Date: September 25, 1992

Analysis Type: Low Level Water Samples

for RAS Semivolatiles

Concentration in ug/L

Station Location Sample I.D.	GW- YL341	_	Method 1		Method WBLK		CRC)L						
Compound	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Con
Butylbenzylphthalate bis(2-Ethylhexyl)phthalate	10 U	1 1	10 U 10 U		10 U 10 U		10 10						# # # # # # # # # # # # # # # # # # #	
	t sand		- 15.7						14 (1 <mark>4</mark> 8) (144) 114 (147)	arva	ansy pipikagy			30 J.C.
e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co	ladi, se													
ww. Warnij			Ha								. gjanët		+	
angarita ng kalanda ka			11-7-11-11				1 1 1 1 1 1 1						i - Danigja	
Station Location Sample I.D.														
Compound	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com
							ralen Omreje							
			er Landier o			n tin								

^{*}The other requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank

BG-Background Sample

TABLE 1B DATA QUALIFIERS

NO QUALIFIERS indicates that the data are acceptable both qualitatively and quantitatively.

- U Indicates that the compound is not detected above the concentration listed.
- L Indicates results which fall below the Contract Required Quantitation Limit. Results are considered estimates and usable for limited purposes.
- J Results are estimated and the data are valid for <u>limited</u> purposes. The results are qualitatively acceptable.
- N Presumptive evidence of the presence of the material. Compound identification is considered to be tentative. The data are usable for limited purposes.
- R Results are rejected and data are invalid for all purposes.

11.17

TABLE 1C

Detected Tentatively Identified Compounds (TICs)

Case No.:

LV2S61 Memo #02

Site: Laboratory: Waste Disposal, Inc. Region IX, Las Vegas

Reviewer:

Lisa Hanusiak

ESAT/ICF Technology, Inc.

Date:

September 25, 1992

Sample Number	Compound	Fraction	Retention Time. min.	Concentrat (ug/L)	tion Rating ^a (Remarks)
YL326	None Found	BNA			
YL327	None Found	BNA			
YL328	None Found	BNA	\$		
YL329	Unknown Unknown	BNA BNA	9.62 11.25	4 J 4 J	
YL331	Unknown	BNA	8.82	4 J	
	Unknown	BNA	11.25	5 J 20 J	
	Unknown	BNA	29.32	20 J	
YL332	None Found	BNA			
YL333	Unknown	BNA	8.82	9 J	
	Unknown	BNA	9.63	3 J	
	Unknown	BNA	11.27	30 J	
YL334	None Found	BNA			
YL335	Unknown	BNA	11.27	7 J	
YL336	Unknown	BNA	8.83	4 Ј	
12000	Unknown	BNA	11.27	40 J	
YL337	None Found	BNA			
YL338	None Found	BNA			
YL339	None Found	BNA	.•		
YL340	None Found	BNA			

D-18

J (estimated): Value is usable for limited purposes.

^{*}Rating codes--probability that identification is correct:

A - High

B - Moderate

TABLE 1C (continued)

Sample

Number

Compound

Retention

Concentration

Rating*

(ug/L)

(Remarks)

YL341

None Found

BNA

J (estimated): Value is usable for limited purposes. *Rating codes--probability that identification is correct:

A - High

B - Moderate

TABLE 2 Sample Quantitation Limits

Case No.: LV2S61 Memo #02
Site: Waste Disposal, Inc.
Laboratory: Region IX, Las Vegas

Reviewer: Lisa Hanusiak

ESAT/ICF Technology, Inc.

Date: Sep

September 25, 1992

Semivolatile Compounds	Units. ug/L		Q	<u>C</u>
Phenol	10			
bis(2-Chloroethyl)ether	. 10			
2-Chlorophenol	10			
1,3-Dichlorobenzene	10			
1,4-Dichlorobenzene	10	•		
1,2-Dichlorobenzene	10	•		
2-Methylphenol	10			
2,2'-oxybis(1-Chloropropan	e) 10			
4-Methylphenol	10			
N-Nitroso-di-N-propylamine	10			
Hexachloroethane	10			
Nitrobenzene	10			
Isophorone	10			
2-Nitrophenol	10			
2,4-Dimethylphenol	10			
bis(2-Chloroethoxy)methane	10			
2,4-Dichlorophenol	10			
1,2,4-Trichlorobenzene	10			
Naphthalene	10			
4-Chloroaniline	10			
Hexachlorobutadiene	10			
4-Chloro-3-methylphenol	10			
2-Methylnaphthalene	10			
Hexachlorocyclopentadiene	10			
2,4,6-Trichlorophenol	10			
2,4,5-Trichlorophenol	25		•	
2-Chloronaphthalene	10			
2-Nitroaniline	25			
Dimethylphthalate	10			
Acenaphthylene	10			
3-Nitroaniline	25			

Q - Qualifier

C - Comment

TABLE 2 (cont'd)

Semivolatile Compounds	Units. ug/L		Q	<u>c</u>
Acenaphthene	10			
2,4-Dinitrophenol	25			
4-Nitrophenol	25			
Dibenzofuran	10			
2,4-Dinitrotoluene	10			
2,6-Dinitrotoluene	10			
Diethylphthalate	10			
4-Chlorophenyl-phenylethe	r 10			
Fluorene	10			
4-Nitroaniline	25			
4,6-Dinitro-2-methylpheno	1 25			
N-Nitrosodiphenylamine	10			
4-Bromophenyl-phenylether	10			
Hexachlorobenzene	10	*		
Pentachlorophenol	25			
Phenanthrene	10			
Anthracene	10			
Carbazole	10			
Di-n-butylphthalate	10			
Fluoranthene	10			
Pyrene	10			
Butylbenzylphthalate	10			
3,3'-Dichlorobenzidine	10			
Benzo(a)anthracene	10			
bis(2-Ethylhexyl)phthalat	e 10			
Chrysene	10			
Di-n-octyl phthalate	10			
Benzo(b)fluoranthene	10			
Benzo(k)fluoranthene	10			
Benzo(a)pyrene	10			
Indeno(1,2,3-cd)pyrene	10			
Dibenz(a,h)anthracene	10			
Benzo(g,h,i)perylene	10			
107 7 7				

Q - Qualifier C - Comment

TABLE 2 (cont'd)

To calculate the sample quantitation limits, multiply CRQL by the following factors:

Sample No.	<u>Semivolatiles</u>
YL326	1.0
YL327	1.0
YL328	1.0
YL329	1.0
YL331	1.0
YL332	1.0
YL333	1.0
YL334	1.0
YL335	1.0
YL336	1.0
YL337	1.0
YL338	1.0
YL339	1.0
YL340	1.0
YL341	1.0
Method Blanks	1.0

CASE NO. L	V2S61 Memo #02	LABORATOR	Y Rec	ion I	X. Las	Vegas	··
SDG NOY	TL326	DATA USER					
sow3	3/90	REVIEW CO	MPLETION	DATE	Septe	ember 25.	1992
NO. OF SAME	PLES 15 WATER	s	oir	·	OTHER		
REVIEWER [] ESD [X] ESAT [] OT	HER, CONT	RACT/CO	TRACT	OR		
		VOA	BNA	\	PEST	OTHER	
1. HOLDING	TIMES						
2. GC-MS T	TUNE/GC PERFORMANCE	_,					
3. INITIAL	. CALIBRATIONS			<u> </u>			
4. CONTINU	JING CALIBRATIONS	<u> </u>	*(<u> </u>			
5. FIELD C	QC						
6. LABORAT	CORY BLANKS	 		<u></u>			
7. SURROGA	ATES						
8. MATRIX	SPIKE/DUPLICATES			2			
9. REGIONA	AL QC ("F" - not applicabl	le)		E		•	
10. INTERNA	AL STANDARDS			<u> </u>			
11. COMPOUN	ND IDENTIFICATION			<u> </u>			
12. COMPOUN	ND QUANTITATION						
13. SYSTEM	PERFORMANCE	-		<u> </u>			
14. OVERALI	L ASSESSMENT			<u> </u>			
X - No more or unus		ta points	are qua	lified	l as ei	ther esti	mated
	nan about 5% of the data para about 5% of the data p						
TPO ACTION	ITEMS:						

ICF TECHNOLOGY INCORPORATED

OCT 0 1 1992

MEMORANDUM

TO:

Kay Lawrence

Remedial Project Manager

Enforcement Programs Section, (H-7-2)

THROUGH:

Roseanne Sakamoto

Environmental Protection Specialist

Quality Assurance Management Section, (P-3-2)

FROM:

Carolyn Studeny

Senior Organic Data Reviewer

Environmental Services Assistance Team (ESAT)

DATE:

September 22, 1992

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region 9 review of the following analytical data:

SITE:

Waste Disposal, Inc.

EPA SITE ID NO:

C1

CASE/SAS NO.:

LV2S61 Memo #01

SDG NO.:

YL326

LABORATORY: ANALYSIS:

Region IX, Las Vegas RAS Pesticides/PCBs

SAMPLE NO.:

15 Water Samples (In Case Summary)

COLLECTION DATE:

August 11 through 13, 1992

REVIEWER:

Lisa Hanusiak

ESAT/ICF Technology, Inc.

If there are any questions, please contact Carolyn Studeny at (415) 882-3184.

Attachment

cc: Brenda Bettencourt, Chief, Laboratory Support Section (P-3-1)

TPO: [X]FYI

[]Attention

[]For Action

ESAT-QA-9A-7006/LLV2S611.RPT

D-04

Data Validation Report

Case No.: LV2S61 Memo #01

Site: Waste Disposal, Inc. Laboratory: Region IX, Las Vegas

Reviewer: Lisa Hanusiak, ESAT/ICF Technology, Inc.

Date: September 22, 1992

I. Case Summary

SAMPLE INFORMATION:

PEST Sample Numbers: YL326 through YL329 and YL331 through YL341

Concentration and Matrix: Low Level Water

Analysis: RAS Pesticides/PCBs

SOW: 3/90

Collection Date: August 11 through 13, 1992 Sample Receipt Date: August 13 and 14, 1992 Extraction Date: August 16 and 18, 1992

Analysis Date: September 1 and 2, 1992

FIELD QC:

Trip Blanks (TB): None Field Blanks (FB): None

Equipment Blanks (EB): YL340 and YL341

Background Samples (BG): None

Field Duplicates (D1): YL326/YL338

(D2): YL329/YL339

METHOD BLANKS AND ASSOCIATED SAMPLES:

PBLK1: YL326, YL329, YL333, YL335, YL336, YL336MS,

YL336MSD, YL338, YL339 and YL340

PBLK2: YL327, YL328, YL331, YL332, YL334, YL337 and ...

YL341

TABLES:

1A: Analytical Results with Qualifications

1B: Data Qualifiers

2: Sample Quantitation Limits of Target Compound

List (TCL) Analytes

ADDITIONAL COMMENTS:

This report was prepared according to the EPA document "Laboratory Data Validation Functional Guidelines For Evaluating Organic Analyses," April 11, 1985.

MS - Matrix Spike; MSD - Matrix Spike Duplicate

ESAT-QA-9A-7006/LLV2S611.RPT

II. Validation Summary

PEST
Acceptable/Comment

HOLDING TIMES	[Y]	[B]
GC/MS TUNE/GC PERFORMANCE	[Y]	[]
CALIBRATIONS	[Y]	[]
FIELD QC	[Y]	[]
LABORATORY BLANKS	[Y]	[]
SURROGATES	[N]	[A]
MATRIX SPIKE/DUPLICATES	[Y]	[]
INTERNAL STANDARDS	[N/A]	[]
COMPOUND IDENTIFICATION	[Y]	[]
COMPOUND QUANTITATION	[Y]	[]
SYSTEM PERFORMANCE	[Y]	[C]

N/A - Not Applicable

III. Validity and Comments

- A. Due to surrogate recovery problems, the quantitation limits for the following analytes are estimates (J) and usable for limited purposes only (see Table 2):
 - All target pesticides/PCBs in sample numbers YL326, YL328, YL329, YL335, YL336, YL338 and YL341

Recoveries below the 60-150% QC advisory validation criteria were observed for the surrogate, decachlorobiphenyl (DCB), on both the primary and confirmation columns as follows:

	PERCENT	RECOVERY
SAMPLE NUMBER	DCB1	DCB2
YL326	49	50
YL328	42	45
YL329	50	52
YL335	36	37
YL336	46	48
YL338	43	46
YL341	47	53

The quantitation limits for the samples listed above are questionable and false negatives may exist.

- B. The 40 CFR 136 technical holding times were not exceeded for any of the samples analyzed.
- C. All other results are considered valid and usable for all purposes. All other quality control criteria have been met and are considered acceptable.

for RAS Pesticides/PCBs

Analysis Type: Low Level Water Samples

TABLE 1A*

Concentration in ug/L

Case No.: LV2S61 Memo #01

Site: Waste Disposal, Inc.

Lab.: Region IX, Las Vegas

Reviewer: Lisa Hanusiak, ESAT/ICF Technology, Inc.

Date: September 22, 1992

Sample Location Sample I.D.	GW- YL326		,	GW- YL3		GW-		GW- YL329			GW-			GW-		1	-23 333	
Sample 1.D.	11320	υ.	L	1173	21	11.5	20	16329	ע	12	11.3	31		1 113	34	10.	333	
Compound	Result	Val	Com	Resuit	Val Con	Result	Val Con	Result	Va	Com	Result	Va	Com	Result	Val Con	Result	Va	Cor
No Pesticides/PCBs detected	ND			ND		ND		ND			ND			ND		ND		
														1. 1.7				
									1::			rģ.						
		1.5														er de		
Sample Location	GM-	24		GW-	28	GW-	26	GW-	30		GW-:	12		GW-	17	GW-	-32	
Sample I.D.	Ar3	34	Ì	YL3	35	YL3	36	YL3	37		YL338	D	1	YL339	D2	YL340	E	В
Compound	Result	Val	Com	Result	Val Con	Result	Val Con	Result	Val	Com	Result	Val	Com	Result	Val Com	Result	Val	Con
No Pesticides/PCBs detected	ND			ND		ND		ND			ND		11 244	ND		ND		
													Jaria.					
												31.5						
												1						

^{*}The requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2. Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

ND-Not Detected

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank

BG-Background Sample

for RAS Pesticides/PCBs

Analysis Type: Low Level Water Samples

Case No.: LV2S61 Memo #01

Site: Waste Disposal, Inc.

Lab.: Region IX, Las Vegas

Reviewer: Lisa Hanusiak, ESAT/ICF Technology, Inc.

Date: September 22, 1992

Concentration in ug/L

Sample Location Sample I.D.		GW YL34	-33 1 E	В	Method PBI		k	Method PBI		ank										
Compound		Result	Va	Com	Result	Val Co	om	Result	Va	Com	Result	Val	Com	Result	Val Cor	Result	Val Com	Result	Val (Com
No Pesticides/PCBs d	letected	ИД			ND			ND												
																		gar e f		
		distance of			1 × J															
		1 (gr. %) (a) 1 (gr.)									·									
		100															a mafi			
Sample Location Sample I.D.																				
Compound		Result	Val	Com	Result	Val Co	om	Result	Va	Com	Result	Val	Com	Result	Val Con	Result	Val Com	Result	Val	Com
						1. 1.					1 #1 1 * 1									
		11111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 ° '								a. 2.									
										4.9.										
																		5.00 P.		

*The requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limits

ND-Not Detected

D1, D2, etc.-Field Duplicate Pairs
FB-Field Blank, EB-Equipment Blank, TB-Travel Blank
BG-Background Sample

TABLE 1B DATA QUALIFIERS

NO QUALIFIERS indicates that the data are acceptable both qualitatively and quantitatively.

- U Indicates that the compound is not detected above the concentration listed.
- L Indicates results which fall below the Contract Required Quantitation Limit. Results are considered estimates and usable for limited purposes.
- J Results are estimated and the data are valid for <u>limited</u> purposes. The results are qualitatively acceptable.
- N Presumptive evidence of the presence of the material. Compound identification is considered to be tentative. The data are usable for limited purposes.
- R Results are rejected and data are <u>invalid</u> for all purposes.

TABLE 2 Sample Quantitation Limits

Case No.: LV2S61 Memo #01 Site: Waste Disposal, Inc. Laboratory: Region IX, Las Vegas

Reviewer: Lisa Hanusiak

ESAT/ICF Technology, Inc. September 22, 1992

Date:

Pesticides/PCBs	Units. ug/L		Q	<u>C</u>
alpha-BHC	0.05		J	A
beta-BHC	0.05		J	A
delta-BHC	0.05		J	A
gamma-BHC (Lindane)	0.05		J	A
Heptachlor	0.05	•	J	Α
Aldrin	0.05		J	Α
Heptachlor epoxide	0.05		J	A
Endosulfan I	0.05		J	Α
Dieldrin	0.1		J	A
4,4'-DDE	0.1		J	A
Endrin	0.1		J	A
Endosulfan II	0.1		J	A
4,4'-DDD	0.1		J	A
Endosulfan sulfate	0.1		J	A
4,4'-DDT	0.1		J	A
Methoxychlor	0.5		J	A
Endrin ketone	0.1		J	A
Endrin aldehyde	0.1		J	A
alpha-Chlordane	0.05		J	A
gamma-Chlordane	0.05		J	A
Toxaphene	5		J	A
Aroclor-1016	1		J	A
Aroclor-1221	2		J	A
Aroclor-1232	1		J	A
Aroclor-1242	1		J	A
Aroclor-1248	1		J	A
Aroclor-1254	1		J	A
Aroclor-1260	1		J	A

Q - Qualifier

C - Comment

TABLE 2 (Continued)

To calculate the sample quantitation limits, multiply CRQL by the following factors:

Sample No.	Pesticides/PCBs
YL326	1.0
YL327	1.0
YL328	1.0
YL329	1.0
YL331	1.0
YL332	1.0
YL333	1.0
YL334	1.0
YL335	1.0
YL336	1.0
YL337	1.0
YL338	1.0
YL339	1.0
YL340	1.0
YL341	1.0
Method Blanks	1.0

CASE NO. LV2S61 Memo #01	LABORATORY	Region	IX. Las	Vegas	<u></u>
SDG NO. YL326	DATA USER			· · · · · · · · · · · · · · · · · · ·	
SOW3/90	REVIEW COMPI	LETION DA	TE Sept	ember 22.	1992
NO. OF SAMPLES WATER	soil _		THER		
REVIEWER [] ESD [X] ESAT [] OT	THER, CONTRAC	CT/CONTRA	ACTOR		
	VOA	BNA	PEST	OTHER	
1. HOLDING TIMES		***************************************	_0_		
2. GC-MS TUNE/GC PERFORMANCE			0_		
3. INITIAL CALIBRATIONS			0		
4. CONTINUING CALIBRATIONS		-	0		
5. FIELD QC			0		
6. LABORATORY BLANKS			_0_		
7. SURROGATES	***************************************		<u> </u>		
8. MATRIX SPIKE/DUPLICATES			0		
9. REGIONAL QC ("F" - not applicab	Le)	<u></u>	F		
10. INTERNAL STANDARDS			<u> </u>		
11. COMPOUND IDENTIFICATION	·		0		
12. COMPOUND QUANTITATION			0		
13. SYSTEM PERFORMANCE			0		
14. OVERALL ASSESSMENT			<u> </u>	 	
 0 - No problems or minor problems to the No more than about 5% of the date or unusable. M - More than about 5% of the data of the da	ta points are que	e qualif: ualified	ied as estir	ither est:	imated
TPO ACTION ITEMS:					

ICF TECHNOLOGY INCORPORATED

NOV 1 2 1992 MEMORANDUM

TO:

Kay Lawrence

Remedial Project Manager

Enforcement Programs Section (H-7-2)

THROUGH:

Roseanne Sakamoto WL for US

Environmental Protection Specialist

Quality Assurance Management Section (P-3-2)

FROM:

Margie D. Weiner MM()

Inorganic Data Reviewer

Environmental Services Assistance Team (ESAT)

DATE:

October 30, 1992

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region IX review of the following analytical data:

SITE:

Waste Disposal, Inc.

EPA SITE ID NO:

C1

CASE/SAS NO.:

LV2S61 Memo #04

SDG NO.:

MYJ602

LABORATORY: ANALYSIS:

Region IX, Las Vegas RAS Total Metals

SAMPLE NO.:

In Case Summary

COLLECTION DATE: August 11, 12, and 13, 1992

REVIEWER:

Chris Davis, ESAT/ICF

If there are any questions, please contact Margie D. Weiner (ESAT/ICF) at (415) 882-3061.

Attachment

cc: Brenda Bettencourt

Steve Remaley, TPO USEPA Region IX

TPO: []FYI

[X]For Attention

[]For Action

ESAT- QA-9A-7283/LV2561M4.RPT

V-33

Data Validation Report

Case No.: LV2S61 Memo #04
Site: Waste Disposal, Inc.
Laboratory: Region IX, Las Vegas
Reviewer: Chris Davis, ESAT/ICF

Date: October 30, 1992

I. Case Summary

SAMPLE INFORMATION: SAMPLE #: MYJ602, MYJ604, MYJ605, MYJ607, MYJ611,

MYJ613, MYJ615, MYJ617, MYJ619, MYJ621, MYJ623, MYJ625, MYJ627, MYJ629, and MYJ631

COLLECTION DATE: August 11, 12, and 13, 1992

SAMPLE RECEIPT DATE: August 13 and 14, 1992

CONCENTRATION & MATRIX: 13 Low Concentration Groundwater Samples and

2 Low Concentration Water Samples

FIELD QC: Field Blanks (FB): None

Equipment Blanks (EB): MYJ629 and MYJ631

Background Samples (BG): None

Duplicates (D1): MYJ602 and MYJ625

(D2): MYJ607 and MYJ627

LABORATORY QC: Matrix Spike: MYJ621

Duplicates: MYJ621

ICP Serial Dilution: MYJ621

ANALYSIS: RAS Total Metals

Analyte	Sample Preparation and Digestion Date	Analysis <u>Date</u>
ICP Metals	September 24, 1992	September 25, 1992
GFAA: Arsenic Lead Selenium Thallium	September 9, 1992 September 9, 1992 September 9, 1992 September 9, 1992	October 7, 1992 October 6, 1992 October 2 and 8, 1992 October 7, 1992
Mercury	September 1, 1992	September 1, 1992

The analytical results with qualifications are listed in Table IA. The definitions of the data qualifiers used in Table 1A are listed in Table 1B. Laboratory blanks and associated samples are listed below the data qualifiers in Table 1B. This report was prepared in accordance with the EPA Contract Laboratory Program Inorganic Statement of Work for March, 1990, and the EPA Draft Document "Laboratory Data Validation Functional Guidelines For Evaluating Inorganic Analyses," October, 1989.

ESAT- QA-9A-7283/LV2S61M4.RPT

II. Validation Summary

The data were evaluated based on the following parameters:

Para	meter	<u>Acceptable</u>	Comment
1.	Data Completeness	Yes	
2.	Sample Holding Times	Yes	F
3.	Calibration	Yes	
	a. Initial Calibration Verification		
	b. Continuing Calibration Verification	1	
	c. Calibration Blank		
4.	Blanks	Yes	
	a. Laboratory Preparation Blank		
	b. Field Blank		
	c. Equipment Blank		
5.	ICP Interference Check Sample Analysis	Yes	
6.	Laboratory Control Sample Analysis	Yes	
7.	Spiked Sample Analysis	No	В
8.	Laboratory Duplicate Sample Analysis	Yes	
9.	Field Duplicate Sample Analysis	No	E
10.	GFAA QC Analysis	🎳 No	С
	a. Duplicate Injections		
	b. Analytical Spikes		
11.		Yes	
12.	Sample Quantitation	Yes	A,D
13.	Sample Result Verification	Yes	Ğ

N/A - Not Applicable

III. Validity and Comments

- A. The following results are estimated and are considered usable for limited purposes. The results are flagged "J" in Table 1A.
 - All results above the Instrument Detection Limit but below the Contract Required Detection Limit (denoted with an "L" qualifier)

Results above the Instrument Detection Limit (IDL) but below the Contract Required Detection Limit (CRDL) are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.

- B. The following results are estimated and are considered usable for limited purposes because of accuracy problems. The results are flagged "J" in Table 1A.
 - Aluminum in samples MYJ602, MYJ604, MYJ605, MYJ607, MYJ611, MYJ615, MYJ619, MYJ621, MYJ623, MYJ625, MYJ627, and MYJ631
 - Lead, mercury, and selenium in all of the samples

The matrix spike recovery results for aluminum, lead, mercury, and selenium in QC sample number MYJ621 did not meet the 75-125% criteria for accuracy. The percent recovery and percent bias for each analyte is presented below and is based on an ideal recovery of 100%.

	MYJ621	MYJ621
Analyte	X Recovery	% Bias
Aluminum	150.5	+50.5
Lead	66.0	-44.0
Mercury	70.0	-30.0
Selenium	-74.1 ·	-174.1

Results above the IDL are considered quantitatively uncertain. These matrix spike recovery results show an analytical deficiency, which may be related to matrix interferences. The results reported for aluminum in the samples listed above may be biased high. The results reported for lead, mercury, and selenium in the samples listed above may be biased low, and where non-detected, false negatives may exist.

Note that for selenium, matrix spike sample MYJ621(S) was analyzed undiluted and was quantitated from the calibration curve, whereas sample MYJ621 was reanalyzed at a 5X dilution due to a low analytical spike recovery when analyzed undiluted (analytical spikes are not required for matrix spike samples). All of the other samples, with the exception of equipment blanks MYJ629 and MYJ631, also required reanalysis at a 5X dilution or by the Method of Standard Addition (MSA). Reanalysis at a 5 or 10 fold dilution and quantitation by MSA are analytical methods which minimize the effects of matrix interference. As the equipment blanks do not contain high concentrations of interferents, and as all of the other samples were reanalyzed by methods to reduce matrix interference, the severe low bias indicated by the matrix spike recovery for selenium should not be as pronounced in the samples.

A post-digestion spike recovery result of 102.9% was obtained for aluminum in QC sample number MYJ621.

- C. The following results are estimated and are considered usable for limited purposes because of accuracy problems. The results are flagged "J" in Table 1A.
 - Arsenic in sample MYJ617
 - Lead in samples MYJ602, MYJ604, MYJ607, MYJ611, MYJ613, MYJ615, MYJ617, MYJ619, MYJ621, MYJ623, MYJ625, and MYJ627
 - Selenium in sample MYJ629
 - Thallium in samples MYJ602, MYJ604, MYJ605, MYJ607, MYJ611, MYJ613, MYJ615, MYJ617, MYJ619, MYJ621, MYJ623, MYJ625, and MYJ627

Arsenic, lead, selenium, and thallium were analyzed by the Graphite Furnace Atomic Absorption (GFAA) technique, which requires that a post-digestion analytical spike be performed for each sample to establish the accuracy of the individual analytical determination. The analytical spike recovery results for these analytes in the samples listed above did not meet the 85-115% criteria for accuracy. The percent recovery and percent bias for each analyte is presented below and is based on an ideal recovery of 100%.

Analyte	Sample Number	% Recovery	% Bias
Arsenic	MYJ617	79.5	-20.5
Lead	MYJ602	44.3	:-55.7
	MYJ604	60.7	-39.3
	MYJ607 MYJ611	65.1 56.9	-34.9
	MYJ613	55.4	-43.1 -44.6
	MYJ615	65.8	-44.6 -34.2
	MYJ617	58.6	-34.2 -41.4
	MYJ619	68.4	-41.4
	MYJ621	60.8	-31.6
	MYJ623	62.0	-39.2 -38.0
	MYJ625	58.8	-38.0 -41.2
	MYJ627	64.2	-41.2
	MIJ627	04.2	-33.8
Selenium	MYJ629	81.4	-18.6
Thallium	MYJ602	71.6	-28.4
	MYJ604	80.5	-19.5
	MYJ605	81.1	-18.9
	MYJ607	79.9	-20.1
	MYJ611	79.5	-20.5
	MYJ613	78.0	-22.0
	MYJ615	77.3	-22.7
	MYJ617	82.7	-17.3
	MYJ619	71.3	-28.7
	MYJ621	78.0	-22.0
	MYJ623	82.3	-17.7
	MYJ625	79.0	-21.0
	MYJ627	81.0	-19.0

The post-digestion spike recovery results for arsenic, lead, selenium, and thallium in the samples listed above show an analytical deficiency, most likely related to matrix interferences. Results above the IDL are considered quantitatively uncertain. The detection limits reported for arsenic, selenium, and thallium in the samples listed above, and for lead in samples MYJ604, MYJ607, MYJ613, MYJ615, MYJ617, and MYJ627 may be biased low, and false negatives may exist. The results for lead in samples MYJ602, MYJ611, MYJ619, MYJ621, MYJ623, and MYJ625 may be biased low.

- D. Due to the dilution of the analytical spike, the quantitation limit for the analyte shown below has been raised.
 - Selenium in samples MYJ604 and MYJ615

Selenium was analyzed by the Graphite Furnace AA technique, which requires the analysis of analytical spikes. Analytical spikes are post-digestion spikes prepared prior to analysis by adding a known quantity of the analyte to an aliquot of the digested sample. The samples listed above were diluted by a factor of five because the spike recovery obtained in the original analysis was less than 40%. The low percent recovery obtained for selenium may be due to chemical or physical interferences. Dilution of the samples is performed to reduce any matrix interferences which may be present. Consequently, the IDL and CRDL were raised by a factor of five for samples MYJ604 and MYJ615 due to the five fold dilutions, causing the results for these samples to fall between the MDL and CRDL (Please refer to Comment A.).

- E. A 45.0 Relative Percent Difference (RPD) was obtained for aluminum, a 37.2 RPD was obtained for iron, and a 27.0 RPD was obtained for manganese in the analysis of field duplicate pair samples MYJ607 and MYJ627. The analysis of field duplicate samples is a measure of both field and analytical precision. The results are expected to vary more than laboratory duplicates (±20 criteria for precision) since sampling variability is included in the measurement. The imprecision in the results of the analysis of the field duplicate pair may be due to the sample matrix, high levels of solids in the sample, poor sampling or laboratory technique, or method defects. The effect on the quality of the data is not known. There were no precision problems with field duplicate pair MYJ602 and MYJ625.
- F. The 40 CFR 136 (Clean Water Act) technical holding times were not exceeded for any of the samples. There were no holding time problems.
- G. All of the other results are considered usable for all purposes.
 All QC requirements, other than those discussed above, have been met and are considered acceptable.

Case No.: LV2S61 Memo #04

Site: Waste Disposal, Inc. Lab.: Region IX, Las Vegas

Reviewer: Christopher Davis, ESAT/ICF Technology, Inc.

Date: October 30, 1992

Analysis Type:

Low Concentration Groundwater

Samples for RAS Total Metals

Concentration in ug/L

Sample matrix Station Location Sample I.D.	Groundwa GW-01 MYJ602			GW-02	GW-02 MYJ604			Groundwater GW-04 MYJ605			te:	_	Groundwater GW-10 MYJ611			Groundwa GW-11 MYJ613	•	Groundwa GW-23 MYJ615	ter		
Date of Collection	08-11-9			08-12-92	2		08-13-92	!		08-12-92		•	08-13-92			08-13-92			08-12-92		
Parameter	Result	Val	Com	Result	Va	l Com	Result	Val	Com			l Com		Val	Com	Result	Va	Com	Result	_	l Com
Aluminum	9590	J	В	1690	,	В	22000	J	В	1960	,	BE	3700	3	В	26.3 U			3340	J	В
Antimony	14.8 L	. J	A	11.8 U	1		11.8 U	,	}	11.8 U	J		11.8 U			11.8 U			11.8 U		
Arsenic	4.7 L	.]	A	2.2 U	1		5.8 L	J	A	2.2 U	1		2.2 U			2.2 Ų	1		2.2 U		
Barium	149 L	J	A	40.7 L	. 3	Α	286			58.2 L	J	Α	108 L	J	A	7.5 U	}		67.4 L	J	A
Beryllium	1.6 1	, J	A	1.2 L	. J	A	1.8 L	J	A	1.1 L	J	A	1.2 L	J	A	1.3 L	J	A	1.2 L	J	A
Cadmium	1.1 U	J		1.1 U]		1.1 U	1		1.1 U	,		1.1 U			1.1 U			1.1 U		
Calcium	294000			220000			197000			219000			233000			273000			231000		
Chromium	19.9			7.9 L	. J	Α	39.6			6.5 L	. 3	Α	5.3 L	J	A	3.1 L	J	A	6.4 L	J	Α
Cobalt	10.7 L	, J	Α	2.6 U	1		20.0 L	J	Α	2.6 U	ı ً		6.9 L	J	A	2.6 Ü			2.6 L	J	A
Соррег	20.5 L	J	Α	5.5 L	, J	Α	42.7			6.3 L	.] J	Α	9.5 L	J	Α	3.6 L	J	Α	9.5 L	J	Α
Iron	15000	1		2900	1		35000			3160		E	5790			145			4900		
Lead	2.4 L	,]]	ABC	1.8 U	1 1	вс	17.7	J	В	1.8 U	IJ	вс	2.1 L	J	ABC	1.8 U	J	вс	1.8 U	J	вс
Magnesium	94000			65000		1	68100			69200			68400			81500			67 300		
Manganese	430			90.1			687			256		E	2430		1	55.4	J]	693		
Mercury	0.30 L	J	В	0.30 U	J	В	0.30	J	В	0.30 U	1 3	В	0.30 U	J	В	0.30 U	J	В	0.40	J	В
Nickel	19.7 L	. J	Α	9.7 U	J		32.0 L	J	Α	9.7 U	,		9.7 U			9.7 U	l		12.9 L	J	Α
Potassium	8160			4970 L	J	A	9240			5030			5970			6170			4890 L	J	A
Selenium	38.2	J	В	20.1 L	J	ABD	21.3	3	В	4.0	J	В	30.2	J	В	39.8	J	В	12.2 L	J	ABD
Silver	2.7 (Jį.		2.7 U			2.7 U			2.7			2.7 U			2.7 U			2.7 U		
Sodium	155000			119000			125000			170000	1		134000			151000			128000	l	
Thallium	1.4 U	J	C	1,4 U	J	C	1.4 U	J	С	1.4 U	1	C	14 U	J	c	1.4 U	J	C	1.4 U	J	C
Vanadium	30.3 L	, J	A	7.6 L	J	A	60.3			8.2 L	J	A	12.3 L	j	A	4.7 L	J	A	11.4 L	J	A
Zinc	40.9	1		12.1 L	J	A	111	1		12.1 L	J	A	22.8			23,7			16.0 L	J	A
											1										

Val-Validity Refer to Data Qualifiers in Table 1B

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils.

Case No.: LV2S61 Memo #04

Site: Waste Disposal, Inc. Lab.: Region IX, Las Vegas

Reviewer: Christopher Davis, ESAT/ICF Technology, Inc.

Date: October 30, 1992

Analysis Type:

Low Concentration Groundwater

Samples for RAS Total Metals

Concentration in ug/L

Sample matrix Station Location Sample I.D.	Groundw GW-24 MYJ617	ater	•	Groundwa GW-28 MYJ619	ter		Groundwa GW-26 MYJ621	Groundwa GW-30 MYJ623	r	Groundwa GW-12 MYJ625	,	Groundwa GW-17 MYJ627		Water GW-32 MYJ629	E B						
Date of Collection	08-12-	92		08-11-9	2		08-11-9	2		08-12-9	92		08-11-9	2_		08-12-92	<u>. </u>		08-11-9	2	
Parameter	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	V۶	d Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
Aluminum	26.3	υ		31300	J	В	7280	,	В	53,4 1	. 3	AB	10200	3	В	1240	1	BE	26.3 U		
Antimony	11.8	บ		14.6 I	. []	A	11.8 U	,		11.8 U	ון		23.5 L	J	Α	11.8 U	Ţ.		11.8 U		
Arsenic	2.2	บไฮ	C	6.9 1	. 1	A	2.6 1	J	A	2.2 t	3		4.7 L	J	A	2.2 U	ı		2.2 U		
Barium	7.5	U		308			199 L	J	Α	33.1 I	.]	Α	158 L	J	A	41.7 L	J	Α	7.5 U	r	
Beryllium	1.3	LJ	A	2.3 I	.]	Α	1.3 L	J	A	0.87 E	. 3	A	1.7 L	J	A	1.1 L	J	A	0.27 U		
Cadmium	1.1	บ		1.1 U	J		1.1 t	7		1.1 t	ון	1 .	1.1 U	1		1.1 U	7		1.1 U	r	
Calcium	288000	1		277000			250000			156000			292000			220000			1650 L	J	A
Chromium	3.9	LJ	A	49.1			11.5			2.1 t	ןנ		20.0	ļ	ļ	3.3 L	. 3	Α	2.1 U		
Cobalt	2.6	υ		29.2 1	, J	Α	12.4 L	J	A	2.6 1	J		10.7 L	1	A	2.6 U	i		2.6 U		
Copper	2.4	L J	A	64.4			19.0 L	. []	Α	2.8 I	.]	Α	22.1 L	J	Α	4.3 L	J	Α	2.8 L	J	A
Iron	69.1	LJ	A	46600			11900			208			15900			2170		E	53.5 L	J	A
Lead	1.8	ប្ប	ВС	6.6	J	вс	3.9	1	вс	2.2 L	. 3	ABC	3.5	J	вс	1.8 U	J	вс	1.8 U	J	В
Magnesium	80900			93000			75200	1		42700			92400			68600			361 L	J	A
Manganese	9.4	L J	A	1050			1010			19.7			449	l		195]	E	12.3 L	J	A
Mercury	0.30	UJ	В	0.30 t	ı J	В	0.60	J	В	0.30 t	JJ	B	0.30 U	J	В	0.30 U	J	В	0.30 U	J	В
Nickel	9.7	υ		47.8			17.8 L	J	A	9.7 t	J		11.0 L	J	Α	9.7 U	r		9. 7 U		
Potassium	5550		1	11700	1		6930			4630 L	.]	Α	8140			5010			537 U		
Selenium	52.0	J	В	46.0	J	В	30.5	J	В	30.5	J	В	42.4	J	В	24.1	J	В	2.3 U	J	ВС
Silver	2.7	υ		2.7 L]		2.7 U	i		2,7 U	J		2.7 U			2.7 U			2,7 ป		
Sodium	124000			143000	}	1	150000	1		78900			152000	l		169000			947 L	J	A
Thallium	1.4	UJ	C	1.4 t	ı J	C	1.4 U	J	C	1.4 U	3 3	C	1.4 U	J	C	1.4 U	J	C	1.4 U		/ Contract
Vanadium	3.9	LJ	Α	88.9			22.6 L	J	Α	3.9 L	.]	A	31.2 L	J	A	7.2 L	J	A	1.6 U	ļ.,,,	Landicopor
Zinc	8.1	υ		133			41.5	1		17.2 L	, J	A	44.3	•		8.1 U			8.1 U		

Val-Validity Refer to Data Qualifiers in Table 1B

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils.

Case No.: LV2S61 Memo #04

Site: Waste Disposal, Inc. Lab.: Region IX, Las Vegas

Reviewer: Christopher Davis, ESAT/ICF Technology, Inc.

Date: October 30, 1992

Analysis Type:

Low Concentration Groundwater

Samples for RAS Total Metals

Concentration in ug/L

Sample matrix Station Location Sample I.D. Date of Collection	Water GW-33 MYJ631 08-13-9			LAB BL	NK	· · · · · · · ·	IDL			CROL											
Parameter	Result	Va	Com	Result	Va	Com	Result	Val	Com	Result	Val	Com	Result	Va	Com	Result	Val	Com	Result	Val	Com
sa - villen i i paru- susinsu concesso checcoccida u	, d. po., popularizationi en la cinar		104100000000000							\$00.000001700000000000000000000000000000				1000 2000		0		0050000000			. 5,000
Aluminum	30.3	r	AB	26.3 t	- 1		26.3			200											
Antimony	11.8 1	S. C. WAR	0.0000000000000000000000000000000000000	11.8 (1 100000		11.8		gassana a	60.0		30000000000		5000 - 50000	M 466500000						
Arsonic	2.2 1	J		2.2 (1		2.2			10.0											
Barium	7.5 t			7.5 t	14 2.72		7.5			200		. 16000000000				00000000000000000000000000000000000000		-0000 5000 c	#10n00000000000000000000000000000000000		90.11005
Beryllium	0.27 (J		0.27 (ןן		0.27			5.0											
Cadmium	1.1 (\$00000		1.1 ไ	A 97.50		1.1		100 8000 0	5.0	1					4	51000000000	dhononon.			1000
Calcium	1420 1	J	A	1190 1	1	A	128			5000				1							
Chromium	2.1 t	ןט	. kao arawani	2.1 (ן	5 (100,550.55	2.1			10.0	9 1 300							contractor]]	10000 1000 U
Cobalt	2.6 (J		2.6 t	J		2.6			50.0		1000		1							
Copper	1.5 T	J		2.8 1	, J	A	1.5			25.0	1										
Iron	44.3 1	L J	Α	46.0 I	. J	A	8.1			100										1 1	
Lead	2.0 1	J	AB	1.8 t	J		1.8			3.0				1							
Magnesium	309 1	J	A	259 I	, J	A	198			5000										1 1	
Manganese	11.4 I	7]	A	10.2 I	J	A	0.70	.		15.0					1						
Mercury	0.30 t	JJ	В	0.30 t	J		0.30			0.20		43									
Nickel	9.7 t	J		9.7 U	J		9.7			40.0											
Potassium	537.0 U	J		537 l	J		537	1		5000				1							
Selenium	2.3 t	J J	В	2.3 T	J		2.3			5.0					l						
Silver	2.7 (J		2.7 (3		2.7	1		10.0				-1							
Sodium	853 I	7 1	A	653 1	. J	A	285	1		5000.0							1 1				
Thallium	1.40 t	J		1.4 ()	1	1.4			10.0		1		1						1 1	
Vanadium	1.6 U	J		1.6 T	J		1.6			50.0	1										
Zinc	8.1 (J		8.1 T	1		8.1	1		20.0	1									1 1	
			<u> </u>																		
		1	1			1		1			1	1	1		1					1	

Val-Validity Refer to Data Qualifiers in Table 1B

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils.

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR INORGANIC DATA REVIEW

NO QUALIFIER indicates that the data are acceptable both qualitatively and quantitatively.

- U The analyte was analyzed for but was not detected above the level of the reported value. The reported value is the Instrument Detection Limit (IDL) for waters and the Method Detection Limit (MDL) for soils for all the analytes except Cyanide (CN) and Mercury (Hg). For CN and Hg, the reported value is the Contract Required Detection Limit (CRDL).
- L The analyte was analyzed for but results fell between the IDL for waters or the MDL for soils and the CRDL. Results are estimated and considered usable for limited purposes.
- J The analyte was analyzed for and was positively identified, but the reported numerical value may not be consistent with the amount actually present in the environmental sample. Results are estimated and the data considered usable for limited purposes. Results are qualitatively acceptable.
- R The analyte was analyzed for, but the presence or absence of the analyte has not been verified. Resampling and reanalysis are necessary to confirm or deny the presence of the analyte. Results are rejected and data are unusable for any purposes.
- UJ The analyte was analyzed for but was not detected above the reported value. The reported value may not accurately or precisely represent the sample IDL or MDL.

7-42

INORGANIC REGIONAL DATA ASSESSMENT

CASE	E NO. <u>LV2S61 Memo #04</u>	LABO	RATORY R	egion IX	. Las Ve	gas	
SDG	NO. MYJ602	SITE	NAME W	aste Dis	posal. I	nc.	
SOW	NO. <u>3/90</u>	REVI	EW COMPLE	TION DAT	E <u>Octo</u>	ber 30. 199)2
REVI	EWER [] ESD [X] ESAT	REVI	EWER'S NA	ME <u>Chri</u>	s Davis		
NO.	OF SAMPLES15_ WATER		soil	от	HER		
			ICP	AA	Hg	Other	
1.	HOLDING TIMES		0	0	_0_	-	
2.	CALIBRATION		o	0			
3.	BLANKS		o	<u>0</u>	0		
4.	ICP INTERFERENCE CHECK SAM	APLE (ICS)					
5.	LABORATORY CONTROL SAMPLE	(LCS)		0			
6.	DUPLICATE ANALYSIS		0	_0_	0		
7.	MATRIX SPIKE ANALYSIS		_ <u>x</u> _	<u> </u>	<u> </u>		
8.	METHOD OF STANDARD ADDITION	ON (MSA)		0			
9.	ICP SERIAL DILUTION		0				
10.	SAMPLE QUANTITATION		o	0	0		
11.	SAMPLE VERIFICATION		_ 0_	0	0		
12.	OTHER QC		0	0	_0_		
13.	OVERALL ASSESSMENT		_X_	<u>M</u>	<u> </u>		

TPO ATTENTION: The IDL for mercury is 0.3 ug/L and the CRDL is 0.2 ug/L. The laboratory is unable to achieve the CRDL.

^{0 -} No problems or minor problems that do not affect data usability.

X - No more than about 5% of the data points are qualified as either estimated or unusable.

M - More than about 5% of the data points are qualified as estimated.

Z - More than about 5% of the data points are qualified as unusable.

N/A - Not applicable.

ICF TECHNOLOGY INCORPORATED

NOV 1 2 1992

MEMORANDUM

TO:

Kay Lawrence

Remedial Project Manager

Enforcement Programs Section (H-7-2)

THROUGH:

Roseanne Sakamoto PL For &

Environmental Protection Specialist

Quality Assurance Management Section (P-3-2)

FROM:

Margie D. Weiner (1970)
Inorganic Data Reviewer

Environmental Services Assistance Team (ESAT)

DATE

November 2, 1992

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region IX review of the following analytical data:

SITE:

Waste Disposal, Inc.

EPA SITE ID NO:

C1

CASE/SAS NO.:

LV2S61 Memo #05

SDG NO.:

MYJ603

LABORATORY: ANALYSIS:

Region IX, Las Vegas RAS Dissolved Metals

SAMPLE NO.:

15 Water Samples (See Case Summary)

COLLECTION DATE:

August 11 through 13, 1992

REVIEWER:

Dina David, ESAT/ICF

If there are any questions, please contact Margie D. Weiner (ESAT/ICF) at (415) 882-3061.

Attachment

cc: Brenda Bettencourt, Chief, Laboratory Support Section (P-3-1)

Steve Remaley, TPO USEPA Region IX

TPO: []FYI

[X]For Attention

[X]For Action

ESAT-QA-9A-7310/LV2S61M5.RPT

Data Validation Report

Case No.: LV2S61 Memo #05
Site: Waste Disposal, Inc.
Laboratory: Region IX, Las Vegas
Reviewer: Dina David, ESAT/ICF
Date: November 2, 1992

I. Case Summary

SAMPLE INFORMATION: SAMPLE #: MYJ603, MYJ606, MYJ608, MYJ612, MYJ614,

MYJ616, MYJ618, MYJ620, MYJ622, MYJ624, MYJ626, MYJ628, MYJ630, MYJ632 and MYJ635

COLLECTION DATE: August 11 through 13, 1992 SAMPLE RECEIPT DATE: August 13 and 14, 1992

CONCENTRATION & MATRIX: 15 Low Concentration Ground Water Samples

FIELD QC: Field Blanks (FB): None

Equipment Blanks (EB): MYJ630 and MYJ632

Background Samples (BG): None

Duplicates (D1): MYJ603 and MYJ626

(D2): MYJ608 and MYJ628

LABORATORY QC: Matrix Spike: MYJ622

Duplicates: MYJ622 and MYJ628

ICP Serial Dilution: MYJ622

ANALYSIS: RAS Dissolved Metals

Analyte	E '	Sample Preparation and Digestion Date	Analysis <u>Date</u>
ICP Met	tals	August 28, 1992	August 31, 1992
	Arsenic Lead Selenium Thallium	August 28, 1992 August 28, 1992 August 28, 1992 August 28, 1992	September 21 and 22, 1992 September 23, 1992 September 22, 1992 and October 15, 1992 September 23, 1992
Mercur	y	September 8, 1992	September 10, 1992

The samples were filtered and acid preserved in the field. The analytical results with qualifications are listed in Table 1A. The definitions of the data qualifiers used in Table 1A are listed in Table 1B. This report was prepared in accordance with the EPA Contract Laboratory Program Inorganic Statement of Work for March, 1990, and the EPA Draft Document "Laboratory Data Validation Functional Guidelines For Evaluating Inorganic Analyses," October, 1989.

ESAT-QA-9A-7310/LV2S61M5.RPT

II. Validation Summary

The data were evaluated based on the following parameters:

Para	meter	<u>Acceptable</u>	Comment
1.	Data Completeness	Yes	
2.	Sample Holding Times	No	C
3.	Calibration	No	A
	a. Initial Calibration Verification		
	b. Continuing Calibration Verification	n	
	c. Calibration Blank		
4.	Blanks	No	D
	a. Laboratory Preparation Blank		
	b. Field Blank		
	c. Equipment Blank		
5.	ICP Interference Check Sample Analysis	Yes	
6.	Laboratory Control Sample Analysis	Yes	
7.	Spiked Sample Analysis	No	E
8.	Laboratory Duplicate Sample Analysis	Yes	
9.	Field Duplicate Sample Analysis	No	н
10.	GFAA QC Analysis	• No	F
	a. Duplicate Injections		
	b. Analytical Spikes		
11.	ICP Serial Dilution Analysis	Yes	
12.	Sample Quantitation	Yes	B,G
13.	Sample Result Verification	Yes	I

III. Validity and Comments

- A. The following result is rejected and is considered unusable for any purpose because of calibration blank contamination problems. The result is flagged "R" in Table 1A.
 - Mercury in sample MYJ618

Sample results at the Instrument Detection Limit (IDL) for mercury and less than 10x the blank concentration level that preceded or followed the non-compliant Continuing Calibration Blank (CCB) are considered quantitatively uncertain and are unusable because the concentration level of mercury in the CCB was detected at the IDL of 0.3 μ g/L. The result (0.3 μ g/L) reported for mercury in sample MYJ618 was found at the IDL and less than 10x the concentration of the non-compliant CCB, and is therefore rejected.

- B. The following results are estimated and are considered usable for limited purposes. The results are flagged "J" in Table 1A.
 - All results above the Instrument Detection Limit but below the Contract Required Detection Limit (denoted with an "L" qualifier)

Results above the Instrument Detection Limit (IDL) but below the

D-4/6

Contract Required Detection Limit (CRDL) are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.

- C. The following results are estimated and are considered usable for limited purposes because technical holding times were exceeded. The results are flagged "J" in Table 1A.
 - Mercury in samples MYJ603, MYJ608, MYJ616, MYJ618, MYJ620,
 MYJ622, MYJ624, MYJ626, MYJ628, MYJ630 and MYJ635

These water analyses exceeded the 40 CFR 136 (Clean Water Act) 28-day technical holding time as shown below.

Sample <u>Number</u>	Date <u>Collected</u>	Date <u>Received</u>	Date <u>Analyzed</u>	# of days Exceeded
MYJ603	8-11-92	8-13-92	9-10-92	2
MYJ608	8-12-92	8-13-92	9-10-92	1
MYJ616	8-12-92	8-13-92	9-10-92	1
MYJ618	8-12-92	8-14-92	9-10-92	1
MYJ620	8-11-92	8-13-92	9-10-92	2
MYJ622	8-11-92	8-13-92	9-10-92	2
MYJ624	8-12-92	8-14-92	9-10-92	1
MYJ626	8-11-92	8-13-92	9-10-92	2
MYJ628	8-12-92	8-13-92	9-10-92	1
MYJ630	8-11-92	8-13-92	9-10-92	2
MYJ635	8-12-92	8-14-92	9-10-92	1

Sample results may be biased low. False negatives may exist and detection limits may be higher than the reported values.

The 40 CFR 136 (Clean Water Act) technical holding times were not exceeded for the other analytes in all of the samples.

It should be noted that the mercury result in sample MYJ618 has been previously rejected. Please refer to Comment A.

- D. The following result is estimated and is considered usable for limited purposes because of equipment blank contamination problems. The result is flagged "J" in Table 1A.
 - Antimony in sample MYJ603

The reported result of 393 μ g/L for antimony in equipment blank sample MYJ632 exceeds the Contract Required Detection Limit (CRDL) of 60.0 μ g/L. The result reported for antimony in sample MYJ603 is detected above the Instrument Detection Limit (IDL) and less than ten times the concentration of the associated equipment blank, and is therefore considered quantitatively uncertain. Analytical uncertainty near the detection limit exists because of equipment blank contamination.

An equipment blank is reagent water that has been collected as a sample using decontaminated sampling equipment. The intent of an equipment blank is to monitor for contamination introduced by the sampling activity, although any laboratory introduced contamination will also be present.

- E. The following results are estimated and are considered usable for limited purposes because of accuracy problems. The results are flagged "J" in Table 1A.
 - Lead in all of the samples
 - Mercury in all of the samples

The matrix spike recovery results for lead and mercury in QC sample number MYJ622 did not meet the 75-125% criteria for accuracy. The percent recovery and percent bias for each analyte is presented below and is based on an ideal recovery of 100%.

Analyte	MYJ622 * Recovery	MYJ622 %,Bias
Lead	56.2	-43.8
Mercury	70.0	-30.0

Results above the IDL are considered quantitatively uncertain. The results reported for lead and mercury in all of the samples may be biased low, and where non-detected, false negatives may exist.

It should be noted that the mercury result in sample MYJ618 has been previously rejected. Please refer to Comment A.

- F. The following results are estimated and are considered usable for limited purposes because of accuracy problems. The results are flagged "J" in Table 1A.
 - Arsenic in samples MYJ603, MYJ608, MYJ616 and MYJ628
 - Lead in samples MYJ603, MYJ606, MYJ608, MYJ612, MYJ614, MYJ616, MYJ618, MYJ620, MYJ622, MYJ624, MYJ626, MYJ628 and MYJ635
 - Selenium in samples MYJ606, MYJ616, MYJ630 and MYJ632
 - Thallium in samples MYJ608, MYJ614 and MYJ635

Arsenic, lead, selenium and thallium were analyzed by the Graphite Furnace Atomic Absorption (GFAA) technique, which requires that a post-digestion analytical spike be performed for each sample to establish the accuracy of the individual analytical determination. The analytical spike recovery results for arsenic, lead, selenium and thallium in the samples listed above did not meet the 85-115% criteria for accuracy. The percent recovery and percent bias for each analyte is presented below and is based on an ideal recovery of 100%.

Analyte	Sample Number	% Recovery	% Bias
Arsenic	MYJ603	83.5	-16.5
	MYJ608	82.0	-18.0
	MYJ616	83.5	-16.5
	MYJ628	82.5	-17.5
Lead	MYJ603	79.2	-20.8
	MYJ606	53.6	-46.4
	MYJ608	49.8	-50.2
	MYJ612	53.5	-46.5
	MYJ614	47.8	-52.2
	MYJ616	53.2	-46.8
	MYJ618	44.1	-55.9
	MYJ620	59.3	-40.7
	MYJ622	52.4	-47.6
	MYJ624	74.8	-25.2
	MYJ626	49.1	-50.9
	MYJ628	50.7	-49.3
	MYJ635	53.6	-46.4
Selenium	MYJ606	74.0	~26.0
	MYJ616	74.0	-26.0
	MYJ630	63.0	-37.0
	MYJ632	61.0	-39.0
Thallium	MYJ608	83,4	-16.6
	MYJ614	83.9	-16.1
	MYJ635	84.0	-16.0

The post-digestion spike recovery results for arsenic, lead, selenium and thallium in the samples listed above show an analytical deficiency. Results above the IDL are considered quantitatively uncertain. The results reported for selenium in samples MYJ606 and MYJ616 may be biased low. The detection limits reported for arsenic, lead and thallium in the samples listed above and for selenium in samples MYJ630 and MYJ632 may be biased low and false negatives may exist.

- G. Due to the dilution of the analytical spike, the quantitation limits for the analytes shown below have been raised.
 - Lead in sample MYJ603
 - Selenium in samples MYJ606 and MYJ616

Lead and selenium were analyzed by the Graphite Furnace AA technique, which requires the analysis of analytical spikes. Analytical spikes are post-digestion spikes prepared prior to analysis by adding a known quantity of the analyte to an aliquot of the digested sample. The samples listed above were diluted by a factor of five because the spike recovery obtained in the original analysis was less than 40%. The low percent recovery obtained for lead and selenium may be due to chemical or physical interferences. Dilution of the samples is performed to reduce any matrix

ESAT-QA-9A-7310/LV2S61M5.RPT

interferences which may be present. Consequently, the quantitation limits for lead in sample MYJ603 and for selenium in samples MYJ606 and MYJ616 were raised by the dilution factor.

- H. A 26.9 Relative Percent Difference (RPD) was obtained for selenium in the analysis of field duplicate pair samples MYJ608 and MYJ628. The analysis of field duplicate samples is a measure of both field and analytical precision. The results are expected to vary more than laboratory duplicates (±20 RPD or ±CRDL criteria for precision) since sampling variability is included in the measurement. The imprecision in the results of the analysis of the field duplicate pair may be due to the sample matrix, high levels of solids in the sample, poor sampling or laboratory technique, or method defects. The effect on the quality of the data is not known.
- I. All of the other results are considered usable for all purposes. All QC requirements, other than those discussed above, have been met and are considered acceptable.

17-50

Case No.: LV2S61 Memo #05

Site: Waste Disposal, Inc. Lab.: Region IX, Las Vegas

Reviewer: Dina David, ESAT/ICF Technology, Inc.

Date: November 2, 1992

Analysis Type:

Low Concentration Water Samples

for RAS Dissolved Metals

Concentration in ug/L

Station Location Sample I.D. Date of Collection	GW-01 MYJ603 D 08-11-92			GW-04 MYJ606 08-13-92			GW-07 MYJ608 I 08-12-92)2		GW-10 MYJ612 08-13-92			GW-11 MYJ614 08-13-92			GW-23 MYJ616 08-12-92			GW-24 MYJ618 08-12-92		
Parameter	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Va	l Com
Aluminum	26.3 U			26,3 U			26.3 U			26.3 U			26.3 U			26.3 U			26.3 U		
Antimony	12.2 L	T	BD	11.8 U	1		11.8 U			11.8 U	1		11.8 U		1	11.8 U		1	11.8 U		
Arsenic	2.2 U	alaran a	F	2.2 U	al more		2.2 U	3000	F	2.2 U	2000.4		2.2 L	3	В	2.2 U	Access:	P	2.2 U	4	
Barium	7.5 U		1	7.5 U	1	100000	7.5 U	1		7.5 U	100		7.5 U		1.3 T 18V	7.5 U		1000000	7.5 U	†	
Beryllium	0.97 L	J	В	0.71 L	1	В	0.84 L	J	В	0.82 L	1	В	0.94 L	3	В	0.84 L	3	В	0.94 L	J	В
Cadmium	1.1 U	1		1.1 U	1		1.1 U	1		1.1 U			1.1 U			1.1 U	1		1.1 U	1	
Calcium	279000			183000			210000	100		221000			277000			232000			281000		
Chromium	4.6 L	J	В	5.1 L	J	В	2.1 U			2.1 U			2.3 L	J	В	2.1 U			4.2 L	J	В
Cobalt	2.6 U	ı		2.6 U			2.6 U			2.6 U			2.6 U			2.6 U			2.6 U		1
Copper	1.5 U	,		1.5 U			1.5 U			1.5 U			1.5 U			1.5 U			1.5 U		
Iron	8.1 U	ı	ŀ	8.1 U			8.1 U			8.1 U			8.1 U			8.1 1)			8.1 U		1
Lead	9.0 U	J	EFG	1.8 U	J	EF	1.8 U	J	EF	1.8 U	J	EF	1.8 U	J	EF	1.8 U	J	EF	1.8 U	J	EF
Magnesium	85500			56400			65400			64100			78200			67300			80900		
Manganese	0.74 U	1		0.74 U			26.4			1950			2.3 L	J	В	290			0.74 U		
Mercury	0.30 U	J	CE	0.30 U	J	E	0.30 U	J	CE	0.30 U	J	E	0.30 U	1	E	0.30	1	CE	0.30	R	ACE
Nickel	15.4 L	J	В	9.7 U			10.7 L	J	В	9.7 U			9.7 U			11.2 L	J	В	12.7 L	J	В
Potassium	5520			3960 L	J	В	4470 L	J	В	4710 L	J	В	5540			4110 L	J	В	5270	! !	
Selenium	67.7			17.0 L	J	BFG	30.9		Н	52.9			89.7			13.0 L	J	BFG	87.1		
Silver	2.7 U			2.7 U			2.7 U	1		2.7 U			2.7 U			2. 7 U			2,7 U		
Sodium	146000			121000			159000			127000			137000			131000			124000		
Thallium	1.4 U	1		1.4 U			1.4 U	J	F	1.4 U			1.4 U	J	F	1.4 U			1.4 U		
Vanadium	4.2 L	J	В	2.2 L	J	В	3.6 L	J	В	2.5 L	J	В	4.5 L	J	В	3.2 L	J	В	4.3 L	J	В
Zinc	8.1 U	1		8.1 U			8.1 U			17.2 L	J	В	8.3 L	J	В	8.1 U			8.1 U		1
																	l				
		1			£.	[charge					1	1					1	1		1.5	1

Val-Validity Refer to Data Qualifiers in Table 1B

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils.

Case No.: LV2S61 Memo #05

Site: Waste Disposal, Inc. Lab.: Region IX, Las Vegas

Reviewer: Dina David, ESAT/ICF Technology, Inc.

Date: November 2, 1992

Analysis Type:

Low Concentration Water Samples

for RAS Dissolved Metals

Concentration in ug/L

Station Location Sample L.D. Date of Collection	GW-28 MJY620 08-11-92			GW-26 MYJ622 08-11-92			GW-30 MYJ624 08-12-92			GW-12 MYJ626 D 08-11-92	1		GW-17 MYJ628 D 08-12-92	2		GW-32 MYJ630 E 08-11-92	В		GW-33 MYJ632 E 08-13-92	В	
Parameter	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Va	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
Aluminum	26.3 U	J		26.3 U			26.3 U			26.3 U	,		26.3 U			26.3 U			26.3 U	y J	
Antimony	11.8 U	J		11.8 U			11.8 U	,		11.8 U	7		11.8 U			11.8 U	1		393		D
Arsenic	2.2 \	J		2.2 U			2.2 U	ı		2.2 U	Ţ.		2.2 U	1	F	2.2 U			2.2 U	,	
Barium	10.2 L	J	В	7.5 U			30.2 L	J	В	7.5 U	1		7.5 U			7.5 U			7.5 U	J	
Beryllium	0.95 1	, J	В	0.84 L	J	В	0.54 L	J	В	1,1 L	J	В	0.81 L	J	В	0.27 U			0.27 U	ı	
Cadmium	1.1 U	ונ		1.1 U			1.1 U	ı		1.1 U	r		1.1 U	r		1.1 U			1.1 U	J	
Calcium	260000	1		239000			153000	1		279000			211000			160 L	J	В	128 U	ı	
Chromium	2.1 U	J		2.1 L	J	В	2.5 L	J	В	3.6 L	J	В	2.1 U			2.1 U			2.1 U	J .	
Cobalt	2.6 l	J		2.6 U			2.6 U			2.6 U	1		2.6 U			2.6 U			11.4 L	J	В
Copper	1.5 U	ן		1.5 U		}	1.5 U			1.5 U	r .	1	1.5 U	r]		1.5 U			1.5 U	Ţ	
Iron	8.1 U	J		8.1 U			8.1 U	1		8.1 U	1		8,1 U			8.1 U			8.1 U	r	
Lead	1.8 U	J	EF	1.8 U	J	EF	1.8 U	ı	EF	1.8 U	J	EF	1.8 U	J	EF	1.8 U	1	E	1.8 U	J	E
Magnesium	76500			69500			43000			85400			66100			180 U			180 U	r	
Manganese	0.74 U	J		10.9 L	J	В	0.93 L	J	В	0.74 U			26.5	l		0.74 U	l		0.74 U	r	
Mercury	0.40	J	CE	1.1	J	CE	0.30 U	J	CE	0.30 U	J	GE	0.30 U	J	CE	0.30 U	J	CE	0.30 U	1	E
Nickel	15.5 L	.]	В	9.7 U			9.7 U			9.7 U			9.7 U	1		9.7 U	ļ		9.7 U	<u> </u>	
Potassium	5220			4840 L	J	В	4770 L	J	В	5010	1		4290 L	J	В	537 U			537 U	1	
Selenium	42.5			52.8			31.4			68.1	1		40.5		H	2.3 U	J	F	2.3 U	1	F
Silver	2.7 U	J		2.7 U			2.7 U			2.7 U	.		2.7 U	ļ		2.7 U			2.7 U		
Sodium	138000			142000			79900			146000			163000			308 L	J	В	284 U	r l	<u> </u>
Thallium	1.4 U	J		1.4 U			1.4 U			1.4 U			1.4 U			1.4 U			1.4 ប		
Vanadium	2.8 L	.]	В	3.1 L	J	В	3.9 L	J	В	3.9 L	J	В	3.4 L	J	В	1.6 U			1.6 U		and the state of
Zinc	8.1 U	y		8.1 U			11.5 L	J	В	8.1 U			8.1 U			8.1 U			8.1 U		
	667415 627 (\$66.560.06000000000000000000000000000000	1		 				1000000) 	0.00.0	.4.00000000000								1	10000000000000000000000000000000000000

Case No.: LV2S61 Memo #05

Site: Waste Disposal, Inc.

Lab.: Region IX, Las Vegas

Reviewer: Dana David, ESAT/ICF Technology, Inc.

Date: November 2, 1992

Analysis Type:

Low Concentration Water Samples

for RAS Dissolved Metals

Concentration in ug/L

Station Location Sample I.D. Date of Collection	GW-02 MYJ635 08-12-92			LAB BLAN	ΙK		IDL			CRDL									
Parameter	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Va	Com	Result	Val	Com	Result	Val Com	Result	Val Com
	26.3 L			26.3 U			26.3												
Aluminum						1.0000	1		1 448	200									
Antimony	11.8 U	2555555	10000000	11.8 U	2000.00	lacesa.	11.8	1		60.0	(1300	1			recentación de la constantación	l		r 1901 1900	
Arsenic	2.2 (2.2 U	1		2.2	1	1,24	10.0					10000		1		
Barium	7.5 U	or www.	1002000	7.5 U	e la como		7.4		10000	200	. 3000	1 2348,00	1	ļ					
Beryllium	0.36 I		В	0.27 U			0.30	100	1000	5.0			1						1 1
Cadmium	1.1 U	J	18888888	1.1 U	A CONTRACTOR	1945,6390s. 1	1.1	Jane	1000	5.0		** 1 .8088.818		# 155°2 10°					1 1
Calcium	204000	1		128 U			128			5000									
Chromium	6.6 I	0.400000	В	2.1 U	1400000000	Establisher.	2.1		J. (100 - 100)	10.0		: 1.888601000			# 100 PROTECTS				
Cobalt	2.6 L			2.6 U			2.6			50.0									
Copper	1.5 U	and areas		1.5 U	Acres 1		1.5	1		25.0			10.001.001.000.000000000000000000000000		dr.co.co.co.co.c			51-010-05-050-05-05-05-05-05-05-05-05-05-05-0	
Iron	8.1 U	J		8.1 U	1		8.1			100									
Lead	1.8 U	J	EF	1.8 U	1		1.8	1		3.0									
Magnesium	58600			180 U			180			5000									
Manganese	0.86 L	. 3	В	0.74 U			0.70		ļ	15.0								***********************	
Mercury	0.30 L]]	CE	0.30 U			0.30			0.20									
Nickel	9.7 L	J		9.7 U	ſ		9.7			40.0									
Potassium	4470 L	. J	В	537 U	1		537			5000									
Selenium	37.2			2.3 U	r		2.3			5.0								•	
Silver	2.7 (ı İ		2.7 U			2.7			10.0				1					
Sodium	113000			284 U	ı		284			5000		1							
Thallium	1.4 (,	F	1.4 U			1.4	1		10.0									
Vanadium	3.9 L		В	1.6 U			1.6			50.0		1							
Zinc	8.1 T	54 4 555555		8.1 U	the state of		8.1			20.0									1 1
	···	1	u 1 000000000000000000000000000000000000		1		paragraphic TATOMINI	1		7.000	ar ne p roposition	1			1000000000				
		1			1	 		1				1							

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR INORGANIC DATA REVIEW

NO QUALIFIER indicates that the data are acceptable both qualitatively and quantitatively.

- U The analyte was analyzed for but was not detected above the level of the reported value. The reported value is the Instrument Detection Limit (IDL) for waters and the Method Detection Limit (MDL) for soils for all the analytes except Cyanide (CN) and Mercury (Hg). For CN and Hg, the reported value is the Contract Required Detection Limit (CRDL).
- L The analyte was analyzed for but results fell between the IDL for waters or the MDL for soils and the CRDL. Results are estimated and considered usable for limited purposes.
- J The analyte was analyzed for and was positively identified, but the reported numerical value may not be consistent with the amount actually present in the environmental sample. Results are estimated and the data considered usable for limited purposes. Results are qualitatively acceptable.
- R The analyte was analyzed for, but the presence or absence of the analyte has not been verified. Resampling and reanalysis are necessary to confirm or deny the presence of the analyte. Results are rejected and data are unusable for any purposes.
- UJ The analyte was analyzed for but was not detected above the reported value. The reported value may not accurately or precisely represent the sample IDL or MDL.

V-54

In Reference to Case No(s).:

LV2S61 Memo #05

Contract Laboratory Program **REGIONAL/LABORATORY** COMMUNICATION SYSTEM

Telephone Record Log

	Date of Call:	October 26, 1992		
	Laboratory Name:	Region IX, Las Vegas		
	Lab Contact:	Ernie Appelhans (702)79	8-2621	
	Region:	<u>IX</u>		
	Regional Contact:	Dina David, ESAT/ICF 7	echnology, Inc.	
	Call Initiated By:	Laboratory	X Region	
	to data for the followin	ng sample number(s):		
Summary of	Questions/Issues Discu			
<u>1.</u>		on Form 14 pg. 53 for ICI	eserial dilution sample MYJ62	2 should be
	5.00 not 1.00.			
<u>2.</u>			YJ628 should be below the ID	
Summary of	Resolution:			
1.		ibmitted Form 14 page 53.		
2.		bmitted Form 6 page 36.		
-				
	Hened	lina Dawd	October 30, 1992 Date	
	Signature		Date	

Distribution: (1) Lab Copy, (2) Region Copy, (3) Brenda Bettencourt

V-56

INORGANIC REGIONAL DATA ASSESSMENT

CASE NO. LV2S61 Memo #05	LABOR	ATORY R	egion IX.	Las Ver	as .
SDG NO. MYJ603	SITE	name <u>w</u> a	aste Dist	osal. Ir	nc.
SOW NO. 3/90	REVIE	w comple:	TION DATE	Nover	ber 2. 1992
REVIEWER [] ESD [X] ESAT	REVIE	wer's nai	ME <u>Dina</u>	David	
NO. OF SAMPLES 15 WATER	s	OIL	OTI	IER	
		ICP	AA	Hg	Cyanide
1. HOLDING TIMES			0	<u> </u>	
2. CALIBRATION		0	0	<u>z</u>	
3. BLANKS		<u> </u>	_0_	0	-
4. ICP INTERFERENCE CHECK SAMPLE	(ICS)	0	•		
5. LABORATORY CONTROL SAMPLE (LC	S)	0	0		
6. DUPLICATE ANALYSIS				_ 0	
7. MATRIX SPIKE ANALYSIS		0	<u>M</u>	M	
8. METHOD OF STANDARD ADDITION (MSA)		0		
9. ICP SERIAL DILUTION		0			
10. SAMPLE QUANTITATION		0_	0	0	
11. SAMPLE VERIFICATION			0	0	
12. OTHER QC		_0_	<u> </u>	0	
13. OVERALL ASSESSMENT		<u>x</u>	<u> </u>	M/Z	
0 - No problems or minor problems	that d	lo not af	fect data	a usabil:	ity.

TPO ACTION ITEMS: Mercury result (0.3 µg/L) in sample MYJ618 was rejected due to the CCB value of 0.3 μ g/L obtained.

TPO ATTENTION: The 40 CFR 136 (Clean Water Act) 28-day technical holding time for mercury was exceeded in 11 water samples.

AREAS OF CONCERN: The date on the ICP interelement correction factors form appears to be a default date (1/1/92). The ICP linear range determination was performed (9/15/92) after the ICP analysis (8/31/92) on the samples.

X - No more than about 5% of the data points are qualified as either estimated

M - More than about 5% of the data points are qualified as estimated.

Z - More than about 5% of the data points are qualified as unusable.

APPENDIX E GROUNDWATER PURGING/SAMPLING LOGS

•	.GROUNDWATER PU	•		
PROJECT NAME/ADDRESS:	wDI/	Souta Fe S	Ning 3/	LA
ATE: 2/12/41	SAMPLING TEA	H: PN/	Two .	
EATHER: 200				,
ELL CONDITION:				
ETHOD OF PURGING:	4" [VC	booker		
ETHOD OF SAMPLING:	2" 7eHa	W		
UMP TYPE, Dedicated/P	ortable:	•		
EPTH OF WELL:		SING DIAMETER:		•
EPTH TO WATER:	TI	HE: K:10	OLUHE FACT	OR (VF): 0.0408
EIGHT OF WATER:	(OUTSIDE (X) DIAMETER) ² :	(X) (VF)	- WELL VO	LUME: 8.16 gal.
IME PURGING STARTS:	TIME PURG	ING COMPLETE:_	PUMP	ING RATE:
Thermometer Serial #	:		•	
pH Meter Serial #		Calibrate	i:yes	_no
EC Meter Serial #		Calibrate	1:yes	_no
urdity Meter Serial #		Calibrate	:yes	_no
ther Meter:			Calibra	tea:yesno
ATE TIME VOLU	_	1000	TIRRINTTY	_COMMENTS
112 4:42 C		214 6.65		an, dou
4 4 1	- 52	214 6.36		
वेंशि वेंह	72	117 2.5		
		114 1.60	<u> </u>	First
		·	-	
IME SAMPLING STARTS:	DEPTH TO W	ATER:TI	ME SAMPLING	COMPLETE:
AMPLE ID NUMBER(S):		•		
Comments/Problems:				
		·		
		·		

E-1

Logger's Initials:

Logger's Initials: Ju-

	GROUNDWATER PURG	•	le i to C
PROJECT NAME/ADDRESS:	Waste U	sposal, Inc.	/ MANN PE 7
DATE: 2/13/91	_ sampling team:	Peter Husby	JOPPY MA
WEATHER: Cloudy	Weren Sahpi	LE LOCATION: GW-	-04
WELL CONDITION: 54	india wate	r m Crish	hex
METHOD OF PURGING:	4" Puc L	miler	
METHOD OF SAMPLING:	2" TeHon	boiler	
	Portable:	•	
DEPTH OF WELL:		ng diameter:	
DEPTH TO VATER:	TIME PERSON	: /21 (C) VOLUME F.	ACTOR (VF): 0.0408
HEIGHT OF WATER:	(OUTSIDE (X) DIAMETER) ² :	14 (X) (VF) - WELL	VOLUME: 6,53 gal.
TIME PURGING STARTS:		•	
_			
Thermometer Serial pH Meter Serial	#	 Calibrated: yes	₽NO
DO HOUGH DOLLER	u		no
Turdity Meter Serial Other Meter:	#	Calibrated: yes	no
other meter:	Serrar &	Vali	bracedyesno
DATE TIME VOI	LUME TO EC	pH TURBIDI	TY COMMENTS
2413/4 6;	2 7	12 64 <u>34</u> —	_
<u> </u>	5 12	32 7.34	
	19 10	48 642	
· · ·			
		F477	
TIME SAMPLING STARTS	: DEPTH TO WAT	ER: <u>SD. 10</u> TIME SAMPI	LING COMPLETE:
SAMPLE ID NUMBER(S):	**.		
•	**···		
Comments/Problems:			•

Logger's Initials: 1

E-3

.GROUNDWATER PURGING/SAMPLING LOG

PROJECT NAME/ADDRESS:	
DATE: 3/13/91 SAMPLING TEAM: SAL	
JEATHER: Cloudy Springle SAMPLE LOCAT	ION: 6W07
WELL CONDITION:	
ETHOD OF PURGING: Failer	
ETHOD OF SAMPLING: TEXTON BOLIZA	
PUMP TYPE, Dedicated/Portable:	
DEPTH OF WELL: 58,38 CASING DIAME	TER:
DEPTH TO WATER: 47.38 TIME: 11.30	VOLUME FACTOR (VF): 0.0408
(OUTSIDE HEIGHT OF WATER: (X) DIAMETER) ² : (X)	(VF) - WELL VOLUME:gal.
TIME PURGING STARTS: TIME PURGING COMPLE	
Thermometer Serial # Reckman Calib PH Meter Serial # Reckman Calib EC Meter Serial # YWR make 604 Calib Turdity Meter Serial # Calib Other Meter: Serial #	rated: x yes no
1136 11 \$ 7.4 20.4 1.806 6 11.85 11.8 70.8 1.874 6	TURBIDITY COMMENTS 183 287 287 287 287
TIME SAMPLING STARTS: 13'.65 DEPTH TO WATER: 14'7.	STIME SAMPLING COMPLETE: 12:30
SAMPLE ID NUMBER(S): WAN KD920207	•
Comments/Problems:	
	· .
	Logger's Initials:

E-4

GROUNDWATER PURGING/SAMPLING LOG

PROJECT NAME/ADDRESS: Waste Disposal Inc.		
DATE: 3/13/92 SAMPLING TEAM: Olson / Baylor		
WEATHER: Partly Cloudy SAMPLE LOCATION: 6 WO 9.		
WELL CONDITION: UPDD in standing water not over PVC Cap		
METHOD OF PURGING: Bailor		
METHOD OF SAMPLING: tetlon bailer.		
PUMP TYPE, Dedicated/Portable:		
DEPTH OF WELL: 58 57.72 CASING DIAMETER:		
DEPTH TO WATER: 46.36 TIME: 9:32 VOLUME FACTOR (VF): 0.0408		
HEIGHT OF WATER: 1,36 (X) DIAMETER)2: 4 (X) (VF) - WELL VOLUME: 7.5 gal.		
TIME PURGING STARTS: 932 TIME PURGING COMPLETE: PUMPING RATE:		
Thermometer Serial # Calibrated:		
V /S		

Logger's Initials:

E-5

PROJECT NAME/ADDRESS: W.D.T / Santa Fe Springs, CA
DATE: 2/12/92 SAMPLING TEAM: C.O. /R.S. * J. W
WEATHER: Overcast / 52 stilly rainy SAMPLE LOCATION: 5W-10
WELL CONDITION: in thet
METHOD OF PURGING: 4" Pike bayler
METHOD OF SAMPLING: 2" Teflon buler
PUMP TYPE, Dedicated/Portable:
DEPTH OF WELL: 58.00 CASING DIAMETER: 4 19;
DEPTH TO WATER: 4 94 TIME: VOLUME FACTOR (VF): 0.0408 (OUTSIDE HEIGHT OF WATER: 10.06 (X) DIAMETER) ² : 4 ² (X) (VF) - WELL VOLUME: 6.56 gal.
Time purging starts: \$:55 Time purging complete: pumping rate:
TIME SAMPLING STARTS: DEPTH TO WATER: TIME SAMPLING COMPLETE: SAMPLE ID NUMBER(S): Comments/Problems:

Logger's Initials:

GROUNDWATER PURGING/SAMPLING LOG
PROJECT NAME/ADDRESS: U.D.I / Santa Fe Springs, CA
DATE: $2/12/92$ SAMPLING TEAM: $(.0./R.S./JM$
WEATHER: Great Sightly 1919 SAMPLE LOCATION: GW-11
WELL CONDITION: IN tact
METHOD OF PURGING: Bennett Piston Pump
METHOD OF SAMPLING: 2" Teffon bailer
PUMP TYPE, Dedicated/Portable:
DEPTH OF WELL: 128.40 CASING DIAMETER: 9"
DEPTH TO WATER: 48,30 TIME: VOLUME FACTOR (VF): 0.0408
(OUTSIDE HEIGHT OF WATER: 50.2 (X) DIAMETER)2: 42 (X) (VF) - WELL VOLUME: 52.35 gal.
TIME PURGING STARTS: 8:52 TIME PURGING COMPLETE: PUMPING RATE:
Thermometer Serial # Calibrated:
Comments/Problems:
Logger's Initials: JM

GROUNDWATER PURGING/SAMPLING LOG	•
PROJECT NAME/ADDRESS: Washe Disposal Inc.	•
DATE: 2-12-92. SAMPLING TEAM: Olson / Sale anoto	· · · · · · · · · · · · · · · · · · ·
WEATHER: Party Cloudy SAMPLE LOCATION: 650 GW 2	3
WELL CONDITION:	· · · · · · · · · · · · · · · · · · ·
METHOD OF PURGING: PVC houler	
METHOD OF SAMPLING: tetlor bouler	
PUMP TYPE, Dedicated/Portable:	
DEPTH OF WELL: CASING DIAMETER: VOLUME FACTOR (VF): 0	.0408
HEIGHT OF WATER: (X) DIAMETER)2: (X) (VF) - WELL VOLUME: 3.3	gal.
TIME PURGING STARTS: Y TIME PURGING COMPLETE: PUMPING RATE:_	
Thermometer Serial #	
pH Meter Serial # Calibrated:yesno EC Meter Serial # Calibrated:yesno	
Turdity Meter Serial # Calibrated: yes no Other Meter: Serial # Calibrated: yes	no
DATE TIME VOLUME T OC EC PH TURBIDITY COMMEN	TS
1-12-92 3.4 19.8 0.001 6.78	
5:05 10.3 11.8 0.009 4.95	
TIME SAMPLING STARTS: DEPTH TO WATER: TIME SAMPLING COMPLETE:	
SAMPLE ID NUMBER(S):	
Comments/Problems:	

Logger's Initials:____

PROJECT NAME/ADDRESS: WDT
DATE: 412/92 SAMPLING TEAM: Baylor, Satamoto
WEATHER: Cain SAMPLE LOCATION: 6W-24
WELL CONDITION: 600
METHOD OF PURGING: Perform Purp
METHOD OF SAMPLING: Teffer Bailer
PUMP TYPE, Dedicated/Portable: for teble
DEPTH OF WELL: 12 CASING DIAMETER: 4.4.
DEPTH TO WATER: 63.72 TIME: 3.35P VOLUME FACTOR (VF): 0.0408
HEIGHT OF WATER: 49 (X) DIAMETER)2: 42 (X) (VF) - WELL VOLUME: 33 gal.
TIME PURGING STARTS: 3:46 TIME PURGING COMPLETE: 5:11 Pumping Rate: 1.2 1pa
Thermometer Serial # Calibrated:yekno EC Meter Serial # Calibrated:yesno Turdity Meter Serial # Calibrated:yesno Other Meter:Serial #Calibrated:yesno
DATE TIME VOLUME T °C EC PH TURBIDITY COMMENTS 11/92 4:13 33 91 20.1 023 7.01 11/92 4:43 66 7 700 031 7.01 5:11 79 1 1 040 6.29
TIME SAMPLING STARTS:5:00 DEPTH TO WATER: 63.7 GIME SAMPLING COMPLETE: 5:43 SAMPLE ID NUMBER(S): WD920224
Comments/Problems:
Logger's Initials: KA

PROJECT NAME/ADDRESS: Waste Disposal Inc.
DATE: 2/12/92 SAMPLING TEAM: Husby Olson / Sakamete
WEATHER: heavy (ain sample location: GW- 26
WELL CONDITION:
METHOD OF PURGING: PVC bather
METHOD OF SAMPLING: Teflon boiler
PUMP TYPE, Dedicated/Portable:
DEPTH OF WELL: 62.88 CASING DIAMETER: 4
DEPTH TO WATER: 50.09 TIME: 10:42 VOLUME FACTOR (VF): 0.0408
HEIGHT OF WATER: 2.79 (X) DIAMETER)2: 16 (X) (VF) - WELL VOLUME: 8.35 gal.
TIME PURGING STARTS: 10 145 TIME PURGING COMPLETE: PUMPING RATE:
Thermometer Serial # Calibrated:yesno EC Meter Serial # Calibrated:yesno Turdity Meter Serial # Calibrated:yesno Other Meter:Serial # Calibrated:yesno
DATE TIME VOLUME T °C EC PH TURBIDITY COMMENTS 2 12 12 12 12 12 12 12 12 12 12 12 12 12
TIME SAMPLING STARTS: DEPTH TO WATER: TIME SAMPLING COMPLETE:
SAMPLE ID NUMBER(S):
Comments/Problems:
Logger's Initials:

PROJECT NAME/ADDRESS: Waste Disposal, Inc
DATE: 2/11/97 SAMPLING TEAM: Clarice Olson, Rosame Standto, Jen
WEATHER: Overcost, cool SAMPLE LOCATION: GW-28
WELL CONDITION: stending water in cristy box
METHOD OF PURGING: 411 PVC bale
METHOD OF SAMPLING: 2" Teffon bailer
PUMP TYPE, Dedicated/Portable:
DEPTH OF WELL: CASING DIAMETER:
DEPTH TO WATER: 51.81 TIME: VOLUME FACTOR (VF): 0.0408
HEIGHT OF WATER: (X) DIAMETER) ² (X) (VF) - WELL VOLUME: gal.
TIME PURGING STARTS: 15:50 TIME PURGING COMPLETE: 15:30 PUMPING RATE:
Thermometer Serial # Calibrated: yes no EC Meter Serial # Calibrated: yes no Turdity Meter Serial # Calibrated: yes no Other Meter: Serial # Calibrated: yes no
DATE TIME VOLUME T°C EC PH TURBIDITY COMMENTS
TIME SAMPLING STARTS: 16:20 DEPTH TO WATER: 51.82 TIME SAMPLING COMPLETE: 16:55
SAMPLE ID NUMBER(S): WD920228 for Total metals, BNAs, Pestrulas/PCBs, WDAS WD920228D fordisadued metals Comments/Problems:
Logger's Initials

. GROUNDWATER PORGERGY SAMPLING 2000
PROJECT NAME/ADDRESS: WDI
DATE: 41/92 SAMPLING TEAM: Boylor, Husby
WEATHER: cloudy, man SAMPLE LOCATION: 60-30
WELL CONDITION: Good
METHOD OF PURGING: Piston Purp
HETHOD OF SAMPLYING: Teffon Bailes
PUMP TYPE, Dedicated/Portable: fertible
DEPTH OF WELL: 93 CASING DIAMETER: 4.
DEPTH TO WATER: 51.9' TIME: 3:05 P. VOLUME FACTOR (VF): 0.0408
HEIGHT OF WATER: 51-9 (X) DIAMETER)2: (X) (VF) - WELL VOLUME: 28 gal.
TIME PURGING STARTS: 3:10 TIME PURGING COMPLETE: PUMPING RATE: 1.5 gal /my /s
Thermometer Serial # Calibrated: yesno EC Meter Serial # Calibrated: yesno
Turdity Meter Serial # Calibrated: Vyes no
Other Meter: Serial # Calibrated:yesno
DATE TIME VOLUME T°C EC PH TURBIDITY COMMENTS 2/11/C1 3:30 ft 27-01 19.4 1528 7.16 3:53 ft 55301 19.8 1570 7.27 4:15 83-01 19.8 1570 7.23 4:40 ft 19.9 1503 7.10 7.70 after Sampling
TIME SAMPLING STARTS: 4:40 DEPTH TO WATER: 51.96 TIME SAMPLING COMPLETE: 4:40
SAMPLE ID NUMBER(S): WD 920230
Comments/Problems:

Logger's Initials: 10

GROUNDWATER PURG	ING/SAMPLING LOG
PROJECT NAME/ADDRESS: WDI	
DATE: $\frac{1}{92}$ SAMPLING TEAM:	Sakamoto, Manuell
WEATHER: (SAME	LE LOCATION: WD920232
WELL CONDITION: Blank (eg	rupnest)
METHOD OF PURGING:	
METHOD OF SAMPLING:	
PUMP TYPE, Dedicated/Portable:	~
DEPTH OF WELL: CASI	NG DIAMETER:
DEPTH TO WATER:TIME	: VOLUME FACTOR (VF): 0.0408
	(X) (VF) - WELL VOLUME:gal.
TIME PURGING STARTS: TIME PURGIN	G COMPLETE: PUMPING RATE:
Thermometer Serial # pH Meter Serial # EC Meter Serial # Turdity Meter Serial # Serial # Serial #	Calibrated:yes b no Calibrated:yes no Calibrated:yes no Calibrated:yes no
DATE TIME VOLUME T OC EC	PH TURBIDITY COMMENTS
TIME SAMPLING STARTS: DEPTH TO WA	
SAMPLE ID NUMBER(S): 1192023	2
Comments/Problems:	G .
and are for organts / HPLL	haver arguins (DI dist wife)

Logger's Initials: 198

H-3

4

,

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
DATE: 5/12/92 SAMPLING TEAM: Kathy Baylor + Tina Diebold
DATE: 5/12/92 SAMPLING TEAM: Kathy Baylor + Tina Diebold WEATHER: Sunny, breizey SAMPLE LOCATION: GW-01 WELL CONDITION: Water in annular space
WELL CONDITION: Wher in annular space
METHOD OF PURGING: PVC bailer METHOD OF SAMPLING: Teflon bailer
method of sampling: teflon bailer
PUMP TYPE, Dedicated/Portable:
DEPTH OF WELL: 58 ft. CASING DIAMETER: 4"
DEPTH TO WATER: 44.04 ft. WATER LEVEL INDICATOR MODEL: 50/instsounder
HEIGHT OF WATER: $\frac{14}{1}$ ft. x 0.661 = WELL VOLUME $\frac{9.254}{1}$ gal.
TIME PURGING STARTS: 16:04 TIME PURGING COMPLETE: 145 PUMPING RATE:
pH Meter Serial # Orion Calibrated: ✓ yes no EC Meter Serial # VWK → Calibrated: ✓ yes no Turbidity Meter Serial # Calibrated: ✓ yes no Other Meter: Calibrated: ✓ yes no
DATE TIME VOLUME T°C EC PH TURBIDITY COMMENTS 5/12/97 16:16 15t 10gal 22°C 2070 7.08 16:33 220gal 22°C 2070 7.08
5/12/972 16:16 157 10gal 2220 6477.13 tumbrol
[6:33 1 20gal 22°C 2070 7.08
16:45 3130gal 22°C 2060 7.13
17:27 Final 22°C 2080 7.11 4.00 ad 200 or 9900
TIME SAMPLING STARTS: 16:50 TIME COMPLETE: 17:22 FINAL WATER DEPTH: 44.09 VK973 VOW, BNAS, RESTITUTE CRAS) SAMPLE ID NUMBER(S): 6W-01 MYJ101 total netals; MYJ102 lisslued notals (R13)
SAMPLE ID NUMBER(S): GW-01 MYJ101 total netals 1 MYJ102 liss and metals (R13)
GW-01 duplicate called "GW-12" - ykars for voar 18NAS, pesticides/PCBS (RAS) - MYJ125 total Metals; MYJ126 dissolved motals (RAS)
Comments/Problems: myJ125 total Metals; MYJ126 dissolved motals (R49) 16:00 HAU reading zero.
The dissolved motals took over 20 minutes each to filter.
Logger's Initials 7.0

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
DATE: 5/13/92 SAMPLING TEAM: Kathy Bottor + Tina Diebold
WEATHER: hot, Sunny, bruzzy SAMPLE LOCATION: 9W-02
WELL CONDITION: water in annular space; thick orange fluid (rusty) on lips of Pycwell casing
METHOD OF PURGING: PUC bailer
METHOD OF SAMPLING: 16flon 1091/08
PUMP TYPE, Dedicated/Portable: P/A
DEPTH OF WELL: 53 ft. CASING DIAMETER: 4"
DEPTH TO WATER: 39,74 ft. WATER LEVEL INDICATOR MODEL: Solinst
HEIGHT OF WATER: 13.26 ft. x 0.661 = WELL VOLUME 8.76 gal.
TIME PURGING STARTS: 10:18 TIME PURGING COMPLETE: 11-1 PUMPING RATE:
pH Meter Serial # Orion Calibrated: x yes no EC Meter Serial # VWR + Z Calibrated: x yes no Turbidity Meter Serial # Calibrated: yes no Calibrated: yes no Calibrated: yes no
DATE TIME VOLUME T°C EC PH TURBIDITY COMMENTS 5/13/92 10:40 15+990 21.5°C 2080 6.82 5/13/92 10:56 2nd 1990 21°C 2010 6.99 5/13/92 11:11 3rd 21gal 21°C 1960 6.99
5/13/92 11:26 Final 21°C [970 6.9] (130(253000)) TIME SAMPLING STARTS: 11:15 TIME COMPLETE: 11:25 FINAL WATER DEPTH: 39.75
SAMPLE ID NUMBER(S): RAS VOAS BNAC, PEST /PCBS YK974 RAS TOTAL METALS MYJIUZ; RAS DISSOLVED METALS MYJIUY
Comments/Problems: HNu Reading = 0
One extra von vial, which had been preserved priv to sample collection with 4 drops of 1:1 HCL, was filled with sample rapped, and thouse its pH was measured using origin pH meter approximately is or insultraffer sample collection. The pH of the von sample was bis than 2.
Logger's Initials T.D.

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
DATE: 5/13/92 SAMPLING TEAM: KATHY BUYLOV + TIM D'ELOCI
WEATHER: SUNNY, 15t DEVE TEN SAMPLE LOCATION: GW-04
WELL CONDITION: high grasses around well
METHOD OF PURGING: PYC 1000/er
METHOD OF SAMPLING: tetlor banber
PUMP TYPE, Dedicated/Portable:
DEPTH OF WELL: 68.74 ft. CASING DIAMETER: 4"
DEPTH TO WATER: 57.36 ft. WATER LEVEL INDICATOR MODEL: Solins+
HEIGHT OF WATER: 11.38 ft. x 0.661 = WELL VOLUME $\frac{7.52}{}$ gal.
TIME PURGING STARTS: 16:44 TIME PURGING COMPLETE: 17:10 PUMPING RATE:
pH Meter Serial # Orion Calibrated: x yes no EC Meter Serial # UWR#T Calibrated: x yes no Turbidity Meter Serial # Calibrated: yes no Calibrated:
DATE TIME VOLUME T OC EC PH TURBIDITY COMMENTS
5/13/92 16:50 15t purpe 22°C 7080 6,77
17:01 Crd 71°C 2000 6.72
17:10 3'd 21.5°C 2020 6,80
712 TID 5/13/42
5/13/42 17:28 ZI'C 7020 6.65 18,750 (200 Source)
TIME SAMPLING STARTS: 17:15 TIME COMPLETE: 17:27 FINAL WATER DEPTH: 57.36
SAMPLE ID NUMBER(S): RAS VOAS BUND , Pests. / PCBS YK975 RAS TOTAL METOLD MYJIOS, JISSELVED MYJIOD
RNS TOTAL METAL MYJ105, disselved MYJ106
comments/Problems: HNU reading was taken appro- LOCK on Well top was jummed and no lock catter available. "WD-40" Was sprayed in the lock to fruit up. The lock then opened.
Was sprayed in the lock to fruit up. The lock then opened.
Logger's Initials $7.\overline{p}$. $E-17$

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
DATE: 5/13/92 SAMPLING TEAM: Kathy Buylor + Tina Diebold
WEATHER: hot, sunny, breezey SAMPLE LOCATION: GN-07 and duplicate "GW-1"
WELL CONDITION: high grasses around well
METHOD OF PURGING: Pre builer
method of sampling: 18th bailer
PUMP TYPE, Dedicated/Portable:
DEPTH OF WELL: 58.28 ft. CASING DIAMETER: 4"
DEPTH TO WATER: 46.07 ft. WATER LEVEL INDICATOR MODEL: 50 lines +
HEIGHT OF WATER: (12.2) ft. x 0.661 = WELL VOLUME gal.
TIME PURGING STARTS: 1:56 TIME PURGING COMPLETE: PUMPING RATE:
pH Meter Serial # Orion Calibrated: K yes no EC Meter Serial # Vwk*2 Calibrated: X yes no Turbidity Meter Serial # Calibrated: yes no Calibrated: yes no Calibrated: yes no Calibrated: yes no
DATE TIME VOLUME T°C EC PH TURBIDITY COMMENTS 5/13/92 14:10 15t Ggal 150 1550 6.26 14:21 22 16gal 23°C 2460 6.35 14:31 300 24gal 21.5°C 2460 6.36
5/13/92 15:05 Final 22.5 2480 6.43 174.2 (2000) TIME SAMPLING STARTS: 14:37 TIME COMPLETE: 15:10 FINAL WATER DEPTH: 46.07
SAMPLE ID NUMBER(S): GW-07: RAS VOAS, BNAS, PEST, PCBS YK976 RAS TOTAL METALS MYJ107; dissolved MYJ108 "GW-17": RAS UDAJ, BNAS, PEST, PCB YK986
Comments/Problems: RAS TOT. METRIS MYJ127, dissolved myJ128 13:48 HAM reading 0.2.
Two extra voa vials, which had been preserved with four drops of is IHCl, were filled with sample lawing a pea-sized bubble. The vials were than reoponed and topped aft with sample, again leaving a pea-sized bubble. The vials were top reopened for a second time and again topped aft with sample. After approximately 30 minutes, the pH of these Logger's Initials T.D. Checked. Both of the pH mousurements were loss than two a samples way K.O.
checked. Both of the pH mousurements were use than two?

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
DATE: 5/18/92 SAMPLING TEAM: Margie Weiner Jerry Manuell, Suc Sanders
WEATHER: Sugay, L.zy, Got, 80° SAMPLE LOCATION: GW-10
well condition: Good Intact.
METHOD OF PURGING: 4" PUC bailer
METHOD OF SAMPLING: 2" Teflon bailer
PUMP TYPE, Dedicated/Portable:
DEPTH OF WELL: 58,0 ft. CASING DIAMETER: 4"
DEPTH TO WATER: 46 ft. WATER LEVEL INDICATOR MODEL:
HEIGHT OF WATER: 11,027 ft. x 0.661 = WELL VOLUME 7.28 52 gal.
TIME PURGING STARTS: TIME PURGING COMPLETE: PUMPING RATE:
pH Meter Serial # OFCKNAN D2 (1) Calibrated: yesno EC Meter Serial # VWK GVMARC Wall (004(#1) Calibrated:yesno
Turbidity Meter Serial # DAT - SC (# Swint) Calibrated:
DATE TIME VOLUME T OC EC PH TURBIDITY COMMENTS
5/13 11:00 7.5 22.0 2090 6.62 divid odot
11:05 7.5 22.0 2060 6.55
11:10 7.5 22.0 2100 6.57
11:35 - 22.1 2160 6.50 7200 NTU final
The trace of the t
TIME SAMPLING STARTS: 11:15 TIME COMPLETE: 11:45 FINAL WATER DEPTH: 46.60
SAMPLE ID NUMBER(S): YK978, MYJIII (+874) > MYJII2 (DBS)
SAMPLE ID NOMBER(S):
Comments/Problems: Sangler was wearing a compreter when the well was opened
of got a reading of 0.0 ppm on the Hrm. (The was ~ 10:33)
· Inflorted a sund comple for dishelved include becomes the fitted on
WATER TO THE POPULATION OF THE
Tomonia Initial - T/ MIX
Logger's Initials $\int \mu_{\perp}/M M$

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
DATE: 5/13/92 SAMPLING TEAM: Jerry Monwell, Magic Werner
WEATHER: Hot & SWING SAMPLE LOCATION: GW-11
WELL CONDITION: Stormany Have Trailer Cristy box
METHOD OF PURGING: Bennett Proton Pump
METHOD OF SAMPLING: 2" Teflon bouler
PUMP TYPE, Dedicated/Portable:
DEPTH OF WELL: 128,4 ft. CASING DIAMETER: 4"
DEPTH TO WATER: 40.98 ft. WATER LEVEL INDICATOR MODEL:
HEIGHT OF WATER: 8.42 ft. x 0.661 = WELL VOLUME 53.8 gal.
TIME PURGING STARTS: 10:45 TIME PURGING COMPLETE: 13:00 PUMPING RATE: 1.5 M
pH Meter Serial # Dukmom \$\overline{\mathcal{D}} (\pm 1) Calibrated: \(\sqrt{yes} \) no EC Meter Serial # \(\sqrt{ywk} \)
Other Meter: Calibrated:yesno
DATE TIME VOLUME T OC EC PH TURBIDITY COMMENTS
5/13 11:10 55 22.2 2380 6.83
<u>5/13/92</u> 12:30 55 22.0 2400 6.84
<u>913</u> 13:00 <u>55</u> <u>22.2</u> <u>2380</u> <u>(6.85</u>
5/10 17:45 22.4 2400 (1.89) A.SO PM From
TIME SAMPLING STARTS: 15:30 TIME COMPLETE: (3:50) FINAL WATER DEPTH: HUMB
SAMPLE ID NUMBER(S): YK979, MYJ113 (Hatal) & MYJ114 (Dradued)
·
Comments/Problems: 10:30 - opened well a got an Hvu reading of 0.0 ppm. There N. Was wearing a responsible when the well was opened.

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED (Santa Fe Springs, CA
DATE: 5/R/92 SAMPLING TEAM: EPA & ICF (Jerry Manuell & 17. Waver)
WEATHER: SMNNy & WARM SAMPLE LOCATION: GW-23
WELL CONDITION: Flush manted cristy box intact despite being in high traffic area
METHOD OF PURGING: bailer (3" PVC)
METHOD OF SAMPLING: <u>Vailer</u> (1/2" Igan)
PUMP TYPE, Dedicated/Portable:
DEPTH OF WELL: 6336 ft. CASING DIAMETER: 4"
DEPTH TO WATER: 57.64 ft. WATER LEVEL INDICATOR MODEL:
HEIGHT OF WATER: 5.72 ft. x 0.661 = WELL, VOLUME 3.78 gal. $\frac{300}{11.3}$
time purging starts: <u>WAO</u> time purging complete: <u>WS5</u> pumping rate: <u>WA</u>
pH Meter Serial # Pakmom 21 (#1) Calibrated: / yesno
EC Meter Serial # VWR School (10) Calibrated:
Other Meter: Calibrated:yesno
DATE TIME VOLUME CC EC PHIN TURBIDITY COMMENTS 5/12 10/40 4 22.7 21/40 7.012
1 1648 4 22.2 2090 7.19
1655 4 21.8 2110 7.12
5/12 1720 / 22.0 2110 7.10 63.2 Final
2/A 1/WU XX.U 2/10 63, 2 7/104
TIME SAMPLING STARTS #10 TIME COMPLETE: 1720 FINAL WATER DEPTH: 57.62
SAMPLE ID NUMBER(S): YK980, MYJ115, MYJ116
Comments (Deck) on a
Comments/Problems:
Logger's Initials MDW/J11

SITE NAME/ADDRESS:	WASTE DISPOSAL, I	NCORPORATED / Santa	Fe Spring, CA
DATE: 5/12/92			ICF/EPA
WEATHER: Song, warm,	% SAMPLE L	ocation: GW-Z	.4
well condition: n +ac			
METHOD OF PURGING:	Bennett Piston Pu	imp	
METHOD OF SAMPLING:	2" Puc bailer		
PUMP TYPE, Dedicated/	Portable:	1000	
DEPTH OF WELL: 112.9	Oft. CASING	DIAMETER:4"	······································
DEPTH TO WATER: 62.9	ft. WATER I	EVEL INDICATOR MOD	EL:
HEIGHT OF WATER: 50.		•	
TIME PURGING STARTS:	185 TIME PURGING	COMPLETE: 1815 PU	MPING RATE:
pH Meter Seria EC Meter Seria Turbidity Meter Seria Other Meter:	al # <u>Brokman 21 (*1)</u> al # <u>VWR scientific (*1)</u> al # <u>DRT-15C</u>	lody (104 Calibrated:	yes no
V 18:30	22.4 240 21.9 2360 22.6 2350 21.6 2060	7.34 7.27 7.30 7.05 1.75	final
TIME SAMPLING STARTS SAMPLE ID NUMBER(S):			
Comments/Problems:	inital HNU = O.	2 ppm; Oppm att	er I min
		Manager and the second	

Logger's Initials MW/JM

	SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
	DATE: 5/12/92 SAMPLING TEAM: Kathy Baylor, Tina Diebold warm to hot; intermittent cloudy and sunny; WEATHER: Skylot breeze SAMPLE LOCATION: GW-26 + 1ab QC
	WELL CONDITION: Water in annular space
	METHOD OF PURGING: PVC bailer
	METHOD OF SAMPLING: teflon bailer
	PUMP TYPE, Dedicated/Portable: N/A
	DEPTH OF WELL: 62.88 ft. CASING DIAMETER: 4"
olins	DEPTH TO WATER: 61.33 Ft. WATER LEVEL INDICATOR MODEL: LUCAS K3
oudo /	HEIGHT OF WATER: $\frac{14.00}{155}$ ft. x 0.661 = WELL VOLUME $\frac{9.254}{155}$ gal.
	TIME PURGING STARTS: TIME PURGING COMPLETE: PUMPING RATE:
	pH Meter Serial # Orion Calibrated: X yes no EC Meter Serial # VWR #2 Calibrated: X yes no Turbidity Meter Serial # Calibrated: Yes no Other Meter: Calibrated: yes no
	DATE TIME VOLUME T OC EC PH TURBIDITY COMMENTS
	5/12/92 12:03 1st 22:5 2080 6,45 turbid
	12:15 2nd 22.0 1910 6.55 decreasing
	12:25 3d 22:0 1830 6:60 Turbiolity
iral	13:01 find 22,5 1930 6.40 42.00 \$102/62 or 4200
	at 200 scale
	TIME SAMPLING STARTS: 12:31 TIME COMPLETE: 13:01 FINAL WATER DEPTH: 48.88
	double volume for LAB QC YK983 Voas, Pesticides, BNAS MYJ122 Dissolved + Total T. C.
	MYJ121 Total 5/12
	Comments/Problems: 11:08 HNU reading 0.2
	Powers Well Sounder gave inaccurate reading, but consistent reading. Four drops of 1:1 HU were added to von vials prior to Sampling. An extra preserved vial was filled with sample from the bailer, absed & shaken, and then the ptt in the vial was measured using the orion pt moter - the pt was below 2.0.
	The first 500 ml of dissolved metal sample took approxiogger's Initials Till. 5 minutes to filter. The second 500 ml taken for Lab QC took minutes using the same filter. E-23

SITE NA	ME/ADDRES	ss:wz	STE DIS	POSAL, II	NCORPORA	TED		
	5/12/92	SAN	IPLING T	EAM: 4]	CF (SN	e Sondons, Je	ury 1. 3 Ma	ngje W.)
		- ()	. 71	SAMPLE LA	OCATION:	GW-28	>	····
WELL CO WHALL of C METHOD	NDITION: MANOR CONT OF PURGI	inclus con NG: b	11/25 · C	pod (exte	nor). Sto	moting Hab L	adnem well	CORNING
METHOD	OF SAMPL	ING: 3"	PVC box	ler for ba	iting is	11/2"+	of bon bail	<u>ot</u>
	PE, Dedi			. /	U			
DEPTH O	F WELL:_	63.5	ft.	CASING				
DEPTH T	O WATER:	55.4	mwet.	WATER L	EVEL INC	ICATOR MODE	il: Soline	<u></u>
	OF WATER	_					5.48.6	
TIME PU	RGING ST	ARTS: :	O TIME	PURGING	COMPLET	'E: 11: 30 PUI	MPING RATE:	N/A
	ty Meter	Serial	# VWR Goi	m1/172 (#1) Y	Indel 404 c	Calibrated: Calibrated: Calibrated: Calibrated:	yes	_no _no _no _no
DATE	TIME	VOLUME	T OC	EC	рН	TURBIDITY	COMMENTS	3
5/12	11: 10	5.4	22.9	2250	6.95			
	11: 20	<u>5,4</u>	22.2	2300	6.91			
	11:30	5A	22.3	2700	6.94	ZOO NTU	(final)	
TIME SA	AMPLING S	TARTS: //	340 TIM	E COMPLE	TE: 12: 7	FINAL W	ATER DEPTH	50.54
SAMPLE	ID NUMBE	R(S):	(982 (B	pg.), no	J19 (To	tal), MYJ	120 (Pitroh	red)
				,		,		
Comment	ts/Proble	ems: HNU	reading	= Oppy	n taken	@ 10:40)	
\mathcal{W}	ater is	brown,	silty e	ven after	con ple	to suging		
* th	that Han	level was	, METE	nd. Piffe	time of	about 3 gr	A.	
(X) SM	mate for	difficulted v	NOTUS 13	tolonex ho	mayor to	Atter you	vell was d	orla
at	12/20			0		Logger'	s Initials	NDW
over	Pleare				/			

1

SITE NA	ME/ADDRES	S:WA	STE DIS	POSAL, IN	CORPORAT	ED / 90m	ta Fespringe, C	A.
DATE:	5/10/12	SAM	MPLING T	eam: <u>Jan</u>	n Monnell	Margie	Werrer	
 Weather	11 4 4	Λ		SAMPLE LO	U	CW-2	0	
A THE WELL CO	d #29 mu indition:		<u> </u>	1	Crista 1	OOX GW-7	o is good + Titai	<i>t.</i>
	OF PURGIN	ig: Be/W	011 0	1 0	mp			
	OF SAMPLI	-		in Boil	1			
	OF SAMPLI							
	OF WELL:			ONCTIVE I	OT A MEMBER	415		
	TO WATER:		50.72		DIAMETER:		TOT .	
	^		<u>ft.</u> 也. 70			CATOR MOD	wag 28.2.	i
	OF WATER				= WELL V		MPING RATE: 1.30	201
TIME PO				bm $\Phi 21$	_			-1()
	pH Meter EC Meter	Serial :	# VWR	Salutific	Model GIA-Ca	alibrated: alibrated:	yesno	
Turbid: Other 1	ity Meter Meter:	Serial a	#_ DR+-	125		alibrated: alibrated:		
			·····					
DATE	TIME	VOLUME	T °C	EC	 pH :	TURBIDITY	COMMENTS	
		volume 28	т °с 22.2	EC 1606	рн : 7.16	TURBIDITY	COMMENTS	_
	TIME	- 1			- .	TURBIDITY		
	TIME 16:25 16:40	28	22.2	1609	7.16	TURBIDITY		
	TIME 16:25 16:40	28 28x2 28x3	22.2	1609	7.16 7.12 7.09	TURBIDITY	O leas	
	TIME 16:25 16:26 17:05	28 28x2 28x3	22.2 22.0 22.0	1600	7.16			· ·
5713 	TIME 16:25 16:26 17:05 17:35	28 28x2 28x3	22.2 22.0 22.0 21.5	1600 1600 1620 1587	7.16 7.12 7.09 7.20	4.40	Cleer	
DATE 5713 TIME S	TIME 14:25 14:25 17:05 17:35 AMPLING S	28 28 x 2 28 x 3 	22.2 22.0 22.5 21.5	1600 1600 1620 1587	7.16 7.12 7.09 7.20 TE: 17:4	4.90 5 final v	Cleer Final WATER DEPTH: 50.	· · ·
DATE 5713 TIME S	TIME 16:25 16:26 17:05 17:35	28 28 x 2 28 x 3 	22.2 22.0 22.0 21.5	1600 1600 1620 1587	7.16 7.12 7.09 7.20	4.90 5 final v	Cleer Final WATER DEPTH: 50.	
DATE 5713 TIME S. SAMPLE	TIME 14:25 14:25 17:05 17:35 AMPLING ST	28 28x2 28x3 	22.2 22.0 22.5 21.5	1606 1609 1620 1587 1587 16 COMPLE 175 12	7.16 7.12 7.09 7.20 TE: 17:4	4.90 5 Final V	Cleer Final WATER DEPTH: 50.	· · ·
DATE 5713 TIME S. SAMPLE Commen	TIME 14:25 14:25 17:05 17:35 AMPLING S	28 28 x 2 28 x 3 28 x 3 TARTS: 17 R(S):	22.2 22.0 22.5 21.5	1600 1600 1620 1587	7.16 7.12 7.09 7.20 TE: 17:43	4.90 5 Final V	Cleer Final WATER DEPTH: 50.	· · · · · · · · · · · · · · · · · · ·
TIME SAMPLE	TIME U:25 U:26 17:05 17:35 AMPLING ST	28 28 x 2 28 x 3 28 x 3 TARTS: 17 R(S):	22.2 22.0 22.5 21.5	1600 1600 1620 1587 1587 16 COMPLE 175 12	7.16 7.12 7.09 7.20 TE: 17:4 3 (1810)	4.90 5 Final V	Cleer Final WATER DEPTH: 50.	· · · · · · · · · · · · · · · · · · ·
TIME SAMPLE	TIME U:25 U:40 17:05 17:35 AMPLING ST ID NUMBER ts/Proble	28 28x2 28x3 28x3 TARTS: 17 R(S):	22.2 22.0 22.0 21.5 10 TIM	1600 1600 1620 1587 1587 16 COMPLE 175 12	7.16 7.12 7.09 7.20 TE: 17:4 3 (1810)	4.90 5 FINAL V), MYJ (3	Cleer Final WATER DEPTH: 50.	- 74

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
DATE: 5/12/92 SAMPLING TEAM: TUF (GIVE S., Jerry 11. 3 Mongie W.)
DATE: 5/12/92 SAMPLING TEAM: THE GOVERNMENT OF CONDITION: WEATHER: WORM & PORTY CONDUCTION: GW-32 (Blank) WELL CONDITION: WASTE DISPOSAL, INCORPORATED W
WELL CONDITION:
METHOD OF PURGING: N/A
method of sampling: bonler (11/2" Teflon)
PUMP TYPE, Dedicated/Portable: 1/1/2
DEPTH OF WELL: 1/A ft. CASING DIAMETER: 4"
DEPTH TO WATER: NATER LEVEL INDICATOR MODEL:
HEIGHT OF WATER: N/A ft. x 0.661 = WELL VOLUME N/A gal.
time purging starts: NA time purging complete: NA pumping rate: NA
pH Meter Serial # Calibrated: yes no EC Meter Serial # Calibrated: yes no Turbidity Meter Serial # Calibrated: yes no Other Meter: Calibrated: yes no
DATE TIME VOLUME T OC EC PH TURBIDITY COMMENTS
TIME SAMPLING STARTS: 11.50 TIME COMPLETE: 12.60 FINAL WATER DEPTH: 10.6
SAMPLE ID NUMBER(S): YK987 (ORG), MXI/29 (TETAL), MYJ/30 (DFRIOWED)
Equipment A Blank comple sound at 5-10 28
Comments/Problems: 1 Blank Sample Powed at GW-28.
Logger's Initials <u>HDW</u>

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
DATE: 5/13/92 SAMPLING TEAM: Kathy Buth Baylor + Tina Dlobold
WEATHER: SAMPLE LOCATION: "GN-33" equip. blank
DATE: 5/13/92 SAMPLING TEAM: Kathy Both Baylor + Tina Diebold WEATHER: SAMPLE LOCATION: "GN-33" equip. blank WELL CONDITION: equipment blank — teflon bailer
METHOD OF PURGING:
METHOD OF SAMPLING:
PUMP TYPE, Dedicated/Portable:
DEPTH OF WELL: ~!Aft. CASING DIAMETER:4"
DEPTH TO WATER:ft. WATER LEVEL INDICATOR MODEL:
HEIGHT OF WATER:ft. x 0.661 = WELL VOLUMEgal.
TIME PURGING STARTS: TIME PURGING COMPLETE: PUMPING RATE:
pH Meter Serial # Calibrated: yes no EC Meter Serial # Calibrated: yes no Turbidity Meter Serial # Calibrated: yes no Other Meter: Calibrated: yes no
DATE TIME VOLUME T OC EC PH TURBIDITY COMMENTS
TIME SAMPLING STARTS: 8:57 TIME COMPLETE: 910 FINAL WATER DEPTH:
SAMPLE ID NUMBER(S): YK988 RAS VOAS, BNIAS + PESTICIDES /PCBS MYJ131 RAS TOTAL METALS; MYJ132 RAS DISSOLUED METALS
MYJ131 RAS TOTAL METALL; MYJ 132 KAJ DISSOLUCIONOS
Comments/Problems:

Logger's Initials T.D.

SITE NAME/ADDRESS:				
DATE: 5/13/92 sa	MPLING TEAM:	Kathy S	aylor + Tina	Diebold
DATE: 5/13/92 SA WEATHER: Sunny, hot, how 2	eg samp	LE LOCATIO	N: "GW	1-34"
WELL CONDITION: field &				
METHOD OF PURGING:	•			
METHOD OF SAMPLING:				
PUMP TYPE, Dedicated/Po	ortable:			att 1974 Comment of the Comment of t
DEPTH OF WELL:	ft. CAS	ING DIAMET	ER:4"	
DEPTH TO WATER:	ft. WAT	ER LEVEL I	NDICATOR MODE	ն:
HEIGHT OF WATER:	ft. x 0	.661 = WEL	L VOLUME	gal.
TIME PURGING STARTS:			•	
nu Motor Corial	4		Calibrated	was no
pH Meter Serial EC Meter Serial	##		Calibrated:	yesno
Turbidity Meter Serial	4		Calibrated:	ves no
Other Meter:	"		Calibrated:	yesno
DATE TIME VOLUME	T ^O C E	С рН 	TURBIDITY	COMMENTS
TIME SAMPLING STARTS: // SAMPLE ID NUMBER(S): K/	1 CHACATAS	g		
RA.	STOT. METALS	MYJ133 ;	dissolved my	J134
	- D (
Comments/Problems:	eld blan	k tor	VOAS F	Metals only
			•	
			Taggayla	Tribiala Va
			rodder, s	Initials 43
		E-28		T.O.

.....

SITE NAME/ADDRESS: <u>WASTE DISPOSAL, INCORPORATED</u>
DATE: 9/1/92 SAMPLING TEAM: Sakanpro, Baylor, Jolley
WEATHER: Clear warm SAMPLE LOCATION: 6W-01, GW-12(Dupe)
well condition: Tool
METHOD OF PURGING: PVC- Bailer
METHOD OF SAMPLING: Teller Baile
PUMP TYPE, Dedicated/Portable: N/A
DEPTH OF WELL: 58.0 ft. CASING DIAMETER: 4"
DEPTH TO WATER: 43.18 ft. WATER LEVEL INDICATOR MODEL: Solust
HEIGHT OF WATER: 14.82 ft. x 0.661 = WELL VOLUME 9.8 gal.
time purging starts: $\frac{3.45}{1.45}$ time purging complete: $\frac{4:30}{1.30}$ pumping rate: $\frac{1.4}{1.40}$
pH Meter Serial # Calibrated: yes no EC Meter Serial # Calibrated: yes no Turbidity Meter Serial # Calibrated: yes no Other Meter: Calibrated: yes no
DATE TIME VOLUME T OC EC PH TURBIDITY COMMENTS
9/11/az 4:00fm 10gal 22.0 2490 7.14 Frst Purge 107 PM 20gal 27.1 2470 7.24 2nd "
107 PM 20 gal 27.1 2470 1.24 2d "
" 4:27 pm 30 gal 220 2440 7.42 3rd "
7/1/92 5:12 - 22.3 2480 7.35 37 Final TIME SAMPLING STARTS: 4:40 TIME COMPLETE: 5:10 FINAL WATER DEPTH: 43.19
TIME SAMPLING STARTS: 4:40 TIME COMPLETE: 510 F FINAL WATER DEPTH: 43.17
SAMPLE ID NUMBER(S): 6W-01, GW-12, YL338
Comments/Problems: HNU 0.02
$E-29$ Logger's Initials $\frac{1}{1}$

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
DATE: 8/12/92 SAMPLING TEAM: Baybo Johnson, Jolley
WEATHER: Clear, worm SAMPLE LOCATION: GW-02
WELL CONDITION: OK - No lock
METHOD OF PURGING: PVC Bailer
METHOD OF SAMPLING: Tellery Bailer
PUMP TYPE, Dedicated/Portable: NA
DEPTH OF WELL: 53.0 ft. CASING DIAMETER: 4"
DEPTH TO WATER: 38.94 ft. WATER LEVEL INDICATOR MODEL:
HEIGHT OF WATER: 14.06 ft. x 0.661 = WELL VOLUME 9.3 gal.
TIME PURGING STARTS: 9:35 TIME PURGING COMPLETE: 10:02 PUMPING RATE: 1/4
pH Meter Serial # Calibrated: yes no EC Meter Serial # Calibrated: yes no Turbidity Meter Serial # Calibrated: yes no Other Meter: Calibrated: yes no
DATE TIME VOLUME T OC EC PH TURBIDITY COMMENTS
91492 9:45/m 105al 22-2 2290 7.27 Front Purge
112/92 9:5/An 2090/ 21.8 2270 7.39 27 Purge
1/142 10:02 M30ga 21.5 1280 7.32 34 Purge
912/92 10:16 - 12.6 2250 7.25 39 Fral
TIME SAMPLING STARTS: 10.05 TIME COMPLETE: 105/6 FINAL WATER DEPTH: 38.99
SAMPLE ID NUMBER(S): GW-OZ, YL327, MYJ604, MYJ635
Comments/Problems: #Nu =0.2
Logger's Initials R

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
DATE: 8/13/92 SAMPLING TEAM: Sakamoto, Jolley
WEATHER: Clear, Worm SAMPLE LOCATION: GW-04
well condition: Good
METHOD OF PURGING: PVC Bailer
METHOD OF SAMPLING: Teflon Briler
PUMP TYPE, Dedicated/Portable: 1/4
DEPTH OF WELL: 68.74 ft. CASING DIAMETER: 4"
DEPTH TO WATER: 56.50 ft. WATER LEVEL INDICATOR MODEL:
HEIGHT OF WATER: 12 x 0.661 = WELL VOLUME 8.03 gal.
TIME PURGING STARTS: TIME PURGING COMPLETE: PUMPING RATE:
pH Meter Serial # Calibrated: yes no EC Meter Serial # Calibrated: yes no Turbidity Meter Serial # Calibrated: yes no Other Meter: Calibrated: yes no
DATE TIME VOLUME T OC EC PH TURBIDITY COMMENTS
8/13/92 9.27 8.00 21.1 1714 6.94 1st page
8/13/92 9:35 16.0 21.6 1707 6.91 2nd punge
8/13/92 9:47 30.0 21.0 1685 6.95 3rd punge
8/13/92 10:05 Find 21.7 1655 6.97 Sport 200 Junal
TIME SAMPLING STARTS: 9:85 TIME COMPLETE: 10:05 FINAL WATER DEPTH: 56.45
SAMPLE ID NUMBER(S):
Comments/Problems: HNU

Logger's Initials____

SITE NAM	E/ADDRES	s: WA	STE DIS	POSAL, II	NCORPORI	TED		
DATE:	12/92	SAM	IPLING T	EAM: Sal	Camoto	Johnson	Tolley	
WEATHER:	Warn	dia-		SAMPLE L	OCATION:	6w-C	27,6W-17	(Dags
WELL CON	DITION:_	Soul				1		
METHOD C	F PURGIN	is: Rai	le					
METHOD C	F SAMPLI	NG: 7E	CLUN &	\ ',				
	E, Dedic							
DEPTH OF	WELL:	58.28	ft.	CASING	DIAMETE	R:4"		
DEPTH TO	WATER:	45.33	ft.	WATER L	EVEL IN	DICATOR MOD	EL: Shind	
HEIGHT C	F WATER:	12,15	ft.	x 0.661	= WELL	VOLUME 8	1.56 (P.6) g	al.
TIME PUR	RGING STA	ARTS: 7.3	<u></u>	PURGING	COMPLE	re: Pu	MPING RATE:_	
ı Turbidit	OH Meter CC Meter Cy Meter eter:	Serial :	 	15 <		Calibrated: Calibrated:	yesyes	no no no no
DATE	TIME	VOLUME	T °C	EC		TURBIDITY	,	
8/12/92	7:50A	9gal	23.3	2520	7.03		1 Purge	
1/12/2	7155A	185rl	21.9	2510			Ind page	
8/12/92	8:07A						3rd purey	
8/12/92	<u>8:374</u>	•	23.0	2440	7,27	44. 1 at 20	final	
				E COMPLE	_	7 FINAL W	NATER DEPTH: 4	<u> 5.3</u> 3
Comment	s/Proble	ms:/	D-1	10	used	an 1	ock B	
						Logger	's Initials_	

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED						
DATE: \$13/92 SAMPLING TEAM: Johnson, Satamoto						
WEATHER: Ckar, warm SAMPLE LOCATION: 6W-10						
well condition: Good						
METHOD OF PURGING: PVC Bails						
METHOD OF SAMPLING: Teller Brile						
PUMP TYPE, Dedicated/Portable:						
DEPTH OF WELL: 58.0 ft. CASING DIAMETER: 4"						
DEPTH TO WATER: 45.83 ft. WATER LEVEL INDICATOR MODEL: Slinst						
HEIGHT OF WATER: 12.17 ft. x 0.661 = WELL VOLUME 8.07 gal.						
TIME PURGING STARTS: 8:00 TIME PURGING COMPLETE: 8:19 ATPUMPING RATE: 1/1						
pH Meter Serial # 2 Calibrated: / yesno EC Meter Serial # 2 Calibrated: / yesno Turbidity Meter Serial # Calibrated: / yesno Other Meter:						
DATE TIME VOLUME T OC EC PH TURBIDITY COMMENTS						
8/13/92 8:04 8gn 327 1850 664 1St purge						
8/13/2 8:10A 16gal 22.2 1950 6.90 2rd purge						
8/13/92 8:19A 24 get 22.5 1890 6.96 3rd purge						
8/12/92 8:30 32gd 22.6 1920 1.90 42 Jenal						
TIME SAMPLING STARTS: 8:07A TIME COMPLETE: 8:30A FINAL WATER DEPTH: 45.89						
SAMPLE ID NUMBER(S):						
Comments/Problems: Marker Space = 30 How as						
aparine K3 HUn = 0						
Voter measured 0.6						

Logger's Initials 18

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
DATE: 8/13/92 SAMPLING TEAM: Johnson, Sukamato
WEATHER: clear warm SAMPLE LOCATION: GW-11
WELL CONDITION: Good
METHOD OF PURGING:
METHOD OF SAMPLING: Toton Bailer
PUMP TYPE, Dedicated/Portable: fortable
DEPTH OF WELL: 128.4 ft. CASING DIAMETER: 4"
DEPTH TO WATER: 46.21 ft. WATER LEVEL INDICATOR MODEL: Solution
HEIGHT OF WATER: 81.19 ft. x 0.661 = WELL VOLUME 54.32 gal.
TIME PURGING STARTS: 806 TIME PURGING COMPLETE: PUMPING RATE: 1.39
pH Meter Serial # 2 Calibrated: Vyes no Calibrated: Vyes no
Turbidity Meter Serial # Calibrated:yes no
Other Meter: Calibrated:yesno
DATE TIME VOLUME T °C EC PH TURBIDITY COMMENTS
1 3/92 9200 54ga 92.0 2200 7.01
13/92 9:30 108gd 39.5 2200 201
10:12 m 150 200 2.03
H S/12m 10:52 324 33de 7/8 150
TIME SAMPLING STARTS: 10140 TIME COMPLETE: 1652 FINAL WATER DEPTH: 46.9
SAMPLE ID NUMBER(S): () () () ()
Comments/Problems: Hou = 30 m annular spice (water,
psible paking (ot run-off) Brylog schant
wore APR's Water measured 0.6
The way of the way of
Logger's Initials Kn

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
DATE: 712/92 SAMPLING TEAM: Sakamoto, Johnson
WEATHER: Clear, warm SAMPLE LOCATION: GW-23
well condition:
method of purging: RC But
METHOD OF SAMPLING: Teller Bayler
PUMP TYPE, Dedicated/Portable: V/A
DEPTH OF WELL: 58.0 ft. CASING DIAMETER: 4"
DEPTH TO WATER: Solingt WATER LEVEL INDICATOR MODEL: Solingt
HEIGHT OF WATER: $6.61 = \text{WELL VOLUME} 408$ gal.
TIME PURGING STARTS: 1:00 PT TIME PURGING COMPLETE: 1:30 PPUMPING RATE: NA
pH Meter Serial # / Calibrated: / yesno
pH Meter Serial # / Calibrated: / yesno EC Meter Serial # / Calibrated: / yesno Turbidity Meter Serial # / Calibrated: / yesno
Other Meter: Calibrated:yesno*
DATE TIME VOLUME T C EC PH TURBIDITY COMMENTS
8/12/92 18/10 pg 4 gal 82.7 23/0 5:59 [3] Prof
" 1:20 pm 8 ga (23 2310 6.86 2nd purge
" 1130 12 233 2270 7.04 3rd prof
spylin 140 1- 24,9 2280 7.16 95.0 final.
TIME SAMPLING STARTS: 1. SS F TIME COMPLETE: 2: OS F FINAL WATER DEPTH: 57.19
SAMPLE ID NUMBER(S) GW 23 YL 333, MYJ616
Comments (Problems 4: 274 (16 Pt (1984))
Comments/Problems: 400 0.5000 WIMO
Logger's Initials $\frac{13}{15}$

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
DATE: 12/92 SAMPLING TEAM: Sakanoto, Johnson
WEATHER: clear warm SAMPLE LOCATION: GW-ZY
WELL CONDITION: Good
METHOD OF PURGING: 15th Purp
METHOD OF SAMPLING: Tellon Builer
PUMP TYPE, Dedicated/Portable: Ston Pump / Pertable
DEPTH OF WELL: 126 th. CASING DIAMETER: 4"
DEPTH TO WATER: 57.00 ft. WATER LEVEL INDICATOR MODEL:
HEIGHT OF WATER: $\frac{71+55}{5}$ ft. x 0.661 = WELL VOLUME $\frac{47+7+35}{47\cdot2}$ gal.
TIME PURGING STARTS: 12.45 TIME PURGING COMPLETE: 2.34 PUMPING RATE:
pH Meter Serial # Calibrated: yes no EC Meter Serial # Calibrated: yes no Turbidity Meter Serial # Calibrated: yes no Other Meter: Calibrated: yes no
DATE TIME VOLUME T OC EC PH TURBIDITY COMMENTS
St
8/12/92 1:30 47gal 23.6 2730 7.20 1st purg
1/2/92 1/30 47gal 23.6 5/30 7.20 11 prig. 1/31" 23, 2 2710 7.34 22d"
1/12/92 1:30 47gal 23.6 2130 7.20 [1 purg.] 1/1 1:51 31" 23.2 2710 7.34 24" 1/12/92 2:34 37gal 24.3 2720 7.26 3rd"
" 1:51 31" 23, 2 2710 7.34 22d" 1/12/92 2:34 3754 24.3 2720 7.26 32d"
" 1:51 31" 23, 2 2710 7.34 22d" 1/12/92 2:34 3754 24.3 2720 7.26 32d"
" 1:51 31" 23, 2 2710 7.34 2d" 1/(2/92 2:34 37gd 24.3 2720 7.26 3rd"
" 1:51 31" 23, 2 2710 7.34 22d" 1/12/92 2:34 3754 24.3 2720 7.26 32d"
"
1 151 31" 23, 2 2710 7.34 24" [12/92 2:34 3754 24.3 2720 7.26 324" [1/1/12 3:00[~ - 23.0 2710 7.31 Fral TIME SAMPLING STARTS: 2:38 TIME COMPLETE: 300 FINAL WATER DEPTH: 61.49 SAMPLE ID NUMBER(S):
"
1 151 31" 23, 2 2710 7.34 24" [12/92 2:34 3754 24.3 2720 7.26 324" [1/1/12 3:00[~ - 23.0 2710 7.31 Fral TIME SAMPLING STARTS: 2:38 TIME COMPLETE: 300 FINAL WATER DEPTH: 61.49 SAMPLE ID NUMBER(S):
1 151 31" 23, 2 2710 7.34 24" [12/92 2:34 3754 24.3 2720 7.26 324" [1/1/12 3:00[~ - 23.0 2710 7.31 Fral TIME SAMPLING STARTS: 2:38 TIME COMPLETE: 300 FINAL WATER DEPTH: 61.49 SAMPLE ID NUMBER(S):

-36

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
DATE: 11/92 SAMPLING TEAM: Baylor, Johnson, Schanory
WEATHER: Clear warm SAMPLE LOCATION: 66-26 (lab QC)
WELL CONDITION: Rusted lock growd 7WD-40
METHOD OF PURGING: PVC Bailer
METHOD OF SAMPLING: Teffer Bailer
PUMP TYPE, Dedicated/Portable: N/A
DEPTH OF WELL: 62, 88 st. CASING DIAMETER: 4"
DEPTH TO WATER: (8, Office the state of the
HEIGHT OF WATER: $\frac{14\sqrt{300}}{100}$ ft. x 0.661 = WELL VOLUME $\frac{9.8}{100}$ gal.
TIME PURGING STARTS: 1:50 TIME PURGING COMPLETE: 20 PUMPING RATE: 1
pH Meter Serial # Calibrated:yesno
EC Meter Serial # Calibrated: yes no Turbidity Meter Serial # Calibrated: yes no
Other Meter: Calibrated:yesno
DATE TIME VOLUME T OC EC PH TURBIDITY COMMENTS
Trips 159 m 10gal 26.5 2250 6.74 First Purce
Elijaz 209Am 20ga 23.0 2260 7.01 20 Page
/11/12 2:20 30gal 22.9 2250 6.75 3ª Puge
/11/92 2145p - 23,0 2270 6.6) 99 Final
TIME SAMPLING STARTS: 2:25 TIME COMPLETE: 2:40 PM FINAL WATER DEPTH: 48,09
SAMPLE ID NUMBER(S): 6-10-26, 4(336, MY)(21, MY) 622
comments/Problems: Lock Russed Shut lookened of WD-40 HVV read 4 st spening - gurckly toward to 1: Reading appears to be from UD-40
and water in thattic box Reading is well = 0.8
2:25 PM Sustained HVV in well = 1 Logger's Initials 43
F_{-3}

SITE NAME/ADDRESS: WASTE DISPOSAL, INCORPORATED
DATE: 1/92 SAMPLING TEAM: Baylor / Johnson Tolley Sakonsto
WEATHER: un der SAMPLE LOCATION: GWL28
WELL CONDITION: Greed
METHOD OF PURGING: PUC Bailer
METHOD OF SAMPLING: Teffer Bailer
PUMP TYPE, Dedicated/Portable: N/A
DEPTH OF WELL: 63.5 ft. CASING DIAMETER: 4"
DEPTH TO WATER: 49.80 ft. WATER LEVEL INDICATOR MODEL: 5 108
HEIGHT OF WATER: 13.7 ft. x 0.661 = WELL VOLUME 9.1 gal.
TIME PURGING STARTS: TIME PURGING COMPLETE: PUMPING RATE:
pH Meter Serial # 2 Calibrated: / yes no EC Meter Serial # 2 Calibrated: / yes no Turbidity Meter Serial # pR7 = 15 < Calibrated: / yes no Other Meter: Calibrated: / yes no
DATE TIME VOLUME T OC EC PH TURBIDITY COMMENTS
S/12/92 11:30 9 gal 24.5° 2380 \$ 656 15t purge.
8/11/92 11:40 18" 25.4° 2340 6.64 2nd prage
711/92 11:50 27gd 4.8 2370 6.59 37 Pure
8/11/92 17:03 final 26.0 350 6.59 300 June 19:00 June 20:00 20:00 June 20:00 20:00 June
TIME SAMPLING STARTS: 11:55 TIME COMPLETE: 12:05 FINAL WATER DEPTH: 49,80
SAMPLE ID NUMBER(S): YE335 MYJ619, MYJ620,
Comments/Problems: HNu = 0

Logger's Initials K

	ADDRESS: W						
DATE: 8/	2/92 SAI	MPLING TEA	am:S	alcamo	to, John	rson	
WEATHER:	Hot, sonn	Si	AMPLE LO	CATION:_	(AW-	30	
	TION: Good						
	PURGING:	Viston 1	oung		:		
METHOD OF	SAMPLING:	2 inch	PVC	Ball	er.		
PUMP TYPE,	Dedicated/Po	rtable:	Porta	ble.			
	IELL: 93.42				4"		
DEPTH TO W	NATER: 50.00	ft.	WATER LE	VEL INDI	CATOR MODEL	: SOLINS T	
HEIGHT OF	WATER: 43.47	L_ft. x	0.661	= WELL V	OLUME 28,	10	gal.
TIME PURGI	ing starts: 4:	37 TIME	PURGING	COMPLETE	· PUMF	ING RATE:	
pH EC Turbidity Other Mete	Meter Serial Meter Serial Meter Serial	# 2 # DR T-)	56	Ca Ca Ca	librated:	yes yes yes	_no _no _no _no
	IME VOLUME				URBIDITY		
8/12/52	5:06p 29	83.0	16800	7,50		1 3+ pu	reg
8/12/92/81	5:35p 29	235	1710	7.40		2nd	
8/14/92 6	:05P 29					3°d	
8/12/92	50 f	22.8	1750	<u>737</u>	4.76 NTU	fend)	
	LING STARTS:			re: <u>633</u>	FINAL WAS	TER DEPTH:	5 B , (
Comments/	Problems: W	0.2	·				

					Logger's	Initials	00
						_	J

DATE: 8/11/92 SAMPLING TEAM: Sakameto, Johnson	
DATE: SAMPLING TEAM: STIC MANY	
WEATHER: Warn (85+) SAMPLE LOCATION: Black G	w-3
WELL CONDITION:	
METHOD OF PURGING:	
METHOD OF SAMPLING:	
PUMP TYPE, Dedicated/Portable:	-01-7
DEPTH OF WELL:ft. CASING DIAMETER:4"	
DEPTH TO WATER:ft. WATER LEVEL INDICATOR MODEL:	· · · · · · · · · · · · · · · · · · ·
HEIGHT OF WATER:ft. x 0.661 = WELL VOLUME	gal.
TIME PURGING STARTS: TIME PURGING COMPLETE: PUMPING F	ATE:
pH Meter Serial # Calibrated: yes EC Meter Serial # Calibrated: yes Turbidity Meter Serial # Calibrated: yes Other Meter: Calibrated: yes	no no
DATE TIME VOLUME T OC EC PH TURBIDITY COMM	
SAMPLE ID NUMBER(S): GW-32, YL340, MYJ629, M	EPTH:
SAMPLE ID NUMBER(S): GO JC, 1 CS (O C), P(1000
Comments (Duchleys)	
Comments/Problems:	
Logger's Init	KA

APPENDIX F WELL CONDITION INVENTORY LOGS

Site: WDT Well ID: GW-01
Date: 12/14/1 Time: 4:54 Logger: K. Baylor
Ambient Air Temp (°C): 20°C Weather: overcest, Cool
Condition of Barriers/type (Good/Bad/None):
Accessibility by vehicle (Good/OK/Bad): Good Parking lat)
Ease of locating well (Easy/Difficult):
Access Type (Lock, Hex Bolt, etc.):
Well Cover Integrity (Good/OK/Bad): OK rusted Stee fate
Well Head Integrity (Good/OK/Bad): (PVC Cap)
Well Casing Diameter (2"/4"/other):
Well Cover location relative to ground level (Below) Even/Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover: Nove
Initial HNu reading: Sustained HNu reading:
Is casing marked with water level measuring point (Yes/No): Yes If yes, give type/location back on Casing
Downhole Problems (Yes/No):
Nature of Problem/Corrective Method:
Depth to Groundwater: 46.24 Well Construction Depth: 58.00
Well depth info from: Measured Twenghed tape
Standing water volume (.661 gal/ft for 4" well): 7.8 gal
Water Level Indicator used: Solust
Non-Aqueous Phase Liquid (Yes/No/Unknown):
Comments:
parking lot in Front of 9606/9608 Santa Fe Springs Rd.
norking lot in Front
1 a a lo 1 a 608 Sente Fer Sente Rd
of 1606/ 10 smile a springs in

Site: WDT Well ID: 6W-02
Date: 1412/91 Time: 11:25 Logger: K. Bayloc
Ambient Air Temp (°C): 7°C Weather: Cool, over cest
Condition of Barriers/type (Good/Bad/None): No.
Accessibility by vehicle (Good/OK/Bad): OK (paved area)
Ease of locating well (Easy/Difficult):
Access Type (Lock, Hex Bolt, etc.): tex bolt
Well Cover Integrity (Good/OK/Bad): OK (teel cover/no ock)
Well Head Integrity (Good/OK/Bad): OK (PVC Cap)
Well Casing Diameter (2"/4"/other): 4 //
Well Cover location relative to ground level Below Even/Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover: None
Initial HNu reading: O. 4 Sustained HNu reading:
Is casing marked with water level measuring point (Yes/No): 185 If yes, give type/location dack mark on Casing
Downhole Problems (Yes/No): Vo
Nature of Problem/Corrective Method:
Depth to Groundwater: 41.76 Well Construction Depth: 52.96
Well depth info from: Weighted Tape
Standing water volume (.661 gal/ft for 4" well): 7.4 gal
Water Level Indicator used: Solut
Non-Aqueous Phase Liquid (Yes/No/Unknown): しん kno ルカ
Comments:
No screws in cover Steel cover
No screws in cover Steel cover apparetly cut No lock on steel cover off by facility due to nearby Construction
7.85 due to nearhy
Canstruction.
F-2

Site: Well ID: 6W-03			
Date: 12/17 Time: 10554 Logger: 5M5			
Ambient Air Temp (°C): 25° Weather: PC			
Condition of Barriers/type (Good/Bad/None): Now			
Accessibility by vehicle (Good/OK/Bad): 600d			
Ease of locating well (Easy/Difficult): Fogy			
Access Type (Lock, Hex Bolt, etc.):			
Well Cover Integrity (Good/OK/Bad): Cover, But lock lest of			
Well Head Integrity (Good/OK/Bad): Mobile home Storage			
Well Casing Diameter (2"/4"/other): 4			
Well Cover location relative to ground level (Below/Even/Above)			
Does it appear that water is ever able to pond over wellhead?: No			
USGS Survey data on well cover:			
Initial HNu reading: 22 Sustained HNu reading: 22			
Is casing marked with water level measuring point (Yes/No): If yes, give type/location			
Downhole Problems (Yes/No):			
Nature of Problem/Corrective Method:			
Depth to Groundwater: 60.27 Well Construction Depth: 68.60 Well depth info from: Weighted Tape			
Standing water volume (.661 gal/ft for 4" well): 5.5 gal			
Water Level Indicator used: Solvatst			
Non-Aqueous Phase Liquid (Yes/No/Unknown):			
HNU of 22 systained			

F-3

107.29

Site: Well ID: 6-W-04
Date: 14/791 Time: 9:22 AM Logger: K Baylor
Ambient Air Temp (°C): 18°C Weather: Laty, Cool
Condition of Barriers/type (Good/Bad/None): Nove
Accessibility by vehicle (Good/OK/Bad): Bad (high grass)
Ease of locating well (Easy/Difficult): Difficult (high grass)
Access Type (Lock, Hex Bolt, etc.): Hex 2017
Well Cover Integrity (Good/OK/Bad): OV (rusted Steel Cover)
Well Head Integrity (Good/OK/Bad):
Well Casing Diameter (2"/4"/other):
Well Cover location relative to ground level (Below Even Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover: None
Initial HNu reading: Sustained HNu reading:
Is casing marked with water level measuring point (Yes/No): 10 Casing If yes, give type/location back mark on casing
Downhole Problems (Yes/No): Vo
Nature of Problem/Corrective Method:
Depth to Groundwater: 59.24 Well Construction Depth: 68.74
Well depth info from: Weighted Tape Standing water volume (.661 gal/ft for 4" well): 6.3 gal
Standing water volume (.661 gal/ft for 4" well): 6.3 gal
Water Level Indicator used: SolhST
Non-Aqueous Phase Liquid (Yes/No/Unknown): Un known
Traffic box full Keyed alike of water to well # 31
7.77 E-H

Site: (N) Well ID: (FW-5
Date: 12/17/11 Time: 9:10 Logger: K. Baylor
Ambient Air Temp (°C): 18°C Weather: Laty way
Condition of Barriers/type (Good/Bad/None):
Accessibility by vehicle (Good/OK/Bad):
Ease of locating well (Easy/Difficult): Dithcult (high grass)
Access Type (Lock, Hex Bolt, etc.):
Well Cover Integrity (Good/OK/Bad): OK (rusted steel place)
Well Head Integrity (Good/OK/Bad): OK (PVC cap)
Well Casing Diameter (2"/4"/other):
Well Cover location relative to ground level (Below/Even/Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover: None
Initial HNu reading: 0. Sustained HNu reading: 0. 6
Is casing marked with water level measuring point (Yes/No): [6] If yes, give type/location_black_nack_on_casing
Downhole Problems (Yes/No):
Nature of Problem/Corrective Method:
Depth to Groundwater: 59.78 Well Construction Depth: 64.16
Well depth info from: weighted tope
Standing water volume (.661 gal/ft for 4" well): 2.9 Gal
Water Level Indicator used: Soliver
Non-Aqueous Phase Liquid (Yes/No/Unknown): Un known
Comments

107.14 +06.89 KB

Site: Well ID: 6-W-06
Date: 12/17/91 Time: (0:05 Logger: K. Bry/o
Ambient Air Temp (°C): 20°C Weather: P/Claudy warm
Condition of Barriers/type (Good/Bad/None): No.
Accessibility by vehicle (Good/OK/Bad): bad (Ligh grass)
Ease of locating well (Easy/Difficult): Everely D. Hicult(grafs)
Access Type (Lock, Hex Bolt, etc.): Hex Soft
Well Cover Integrity (Good/OK/Bad): OK (ustal Stel Cour)
Well Head Integrity (Good/OK/Bad):
Well Casing Diameter (2"/4"/other):
Well Cover location relative to ground level (Below Even Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover: None
Initial HNu reading: O.4 Sustained HNu reading:
Is casing marked with water level measuring point (Yes/No): es If yes, give type/location black mark on casing
Downhole Problems (Yes/No): No
Nature of Problem/Corrective Method:
Depth to Groundwater: 51.60 Well Construction Depth: 63.34
Well depth info from: Weighted Tape
Standing water volume (.661 gal/ft for 4" well): 7.8 gal
Water Level Indicator used: Solwet
Non-Aqueous Phase Liquid (Yes/No/Unknown):
Comments:

107.03

/ Site: WQT Well ID: $GW-Q$
Date: 12/17/91 Time: 10:14 Logger: K. Bayloc
Ambient Air Temp (°C): 20°C Weather: p/Cloudy, warn
Condition of Barriers/type (Good/Bad/None):
Accessibility by vehicle (Good/OK/Bad): Rad (high gass)
Ease of locating well (Easy/Difficult): Difficult (high grass)
Access Type (Lock, Hex Bolt, etc.): Hex bot
Well Cover Integrity (Good/OK/Bad): OK (Justed Steel place)
Well Head Integrity (Good/OK/Bad): OK (PVC (4p)
Well Casing Diameter (2"/4"/other): 4"
Well Cover location relative to ground level (Below Even/Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover:
Initial HNu reading: $O.4$ Sustained HNu reading:
Is casing marked with water level measuring point (Yes/No): 125 If yes, give type/location book mark on casing
Downhole Problems (Yes/No): Vo
Nature of Problem/Corrective Method:
Depth to Groundwater: 47.98 Well Construction Depth: 58.28
Well depth info from: Weighted Tape
Standing water volume (.661 gal/ft for 4" well):
Water Level Indicator used: Solut
Non-Aqueous Phase Liquid (Yes/No/Unknown):
Comments:
Trackie Box full
of unter
(oily sheen)
Olly sheen
106.80 F-7

site: WDI well ID: GW-08
Date: 147/91 Time: 10:35 Logger: K Baylor
Ambient Air Temp (°C): 8°C Weather: Overcast cool
Condition of Barriers/type (Good/Bad/None): Voce
Accessibility by vehicle (Good/OK/Bad): Good (Paking lot Accessibility by vehicle (Good/OK/Bad):
Ease of locating well (Easy/Difficult):
Access Type (Lock, Hex Bolt, etc.):
Well Cover Integrity (Good/OK/Bad): OK (rusty steel cover
Well Head Integrity (Good/OK/Bad): 6 K (PVC (ap)
Well Casing Diameter (2"/4"/other):
Well Cover location relative to ground level (Below/Even/Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover: Now
Initial HNu reading: 0.2 Sustained HNu reading: 0.2
Is casing marked with water level measuring point (Yes/No): Yes If yes, give type/location blue mark on Casing
Downhole Problems (Yes/No): No
Nature of Problem/Corrective Method:
Depth to Groundwater: 56.64 Well Construction Depth: 63.00
Well depth info from: Weighted Tape
Standing water volume (.661 gal/ft for 4" well): 4, 2 gal
Water Level Indicator used: Solvet
Non-Aqueous Phase Liquid (Yes/No/Unknown): Unknown
Comments:

106.74

site: NDT well ID: 6W-09
Date: 12/16/ Time: 4:36 Logger: KBaylor
Ambient Air Temp (°C): 22°C Weather: Over Cast, Cool
Condition of Barriers/type (Good/Bad/None):
Accessibility by vehicle (Good/OK/Bad): Good Parky Mers Ac
Ease of locating well (Easy/Difficult):
Access Type (Lock, Hex Bolt, etc.): kx bolt
Well Cover Integrity (Good/OK/Bad): OK (14 Heel)
Well Head Integrity (Good/OK/Bad): OK (PVC Cap)
Well Casing Diameter (2"/4"/other):
Well Cover location relative to ground level (Below/Byen/Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover: None
Initial HNu reading: O2 Sustained HNu reading: O2 ppm
Is casing marked with water level measuring point (Yes/No): 15
Downhole Problems (Yes/No):
Nature of Problem/Corrective Method:
Depth to Groundwater: 46,98 Well Construction Depth: 57.72
Well depth info from: Measured W weighted topse
Standing water volume (.661 gal/ft for 4" well): 7. gal
Water Level Indicator used: Solvar
Non-Aqueous Phase Liquid (Yes/No/Unknown): Unknown)
Comments:
Traffic Box full of whiter-
owner (hersits) complains that where runs off WDI to his
water rus off WDL to his
106.54 property. James Mersit

Site: WDT We	11 ID: GWA Totemorist G
Date: 17/18/91 Time: 1547 Logger: 5	MSIMASON GI
Ambient Air Temp (°C): 26° Wea	
Condition of Barriers/type (Good/Bad	/None): None
Accessibility by vehicle (Good/OK/Ba	d): <u>600d</u>
Ease of locating well (Easy/Difficul	t): Foto:
Access Type (Lock, Hex Bolt, etc.):	Itex
Well Cover Integrity (Good/OK/Bad):	"Ok
Well Head Integrity (Good/OK/Bad):	OK
Well Casing Diameter (2"/4"/other):_	411
Well Cover location relative to grou	ind level (Beloy/Even/Above)
Does it appear that water is ever all wellhead?:	ole to pond over
USGS Survey data on well cover: No	
Initial HNu reading: 5 pm Sustain	ned HNu reading: 2.5
Is casing marked with water level me	easuring point (Yes/No): Unk.
If yes, give type/locat	.10n
Downhole Problems (Yes/No):	
Nature of Problem/Corrective Method	
Depth to Groundwater: 48.58 Wel:	Construction Depth: 58,00
Well depth info from: to weigh	ted tape
Standing water volume (.661 gal/ft	for 4" well): 6.22 gal
Water Level Indicator used: Solmist	
Non-Aqueous Phase Liquid (Yes/No/Un	known): Lhk
Comments: WOI	
Identification error	
Identification error in labelly of SB-1	Shallow SB- 3-11 MW-10
wells, MW-11 73	1-11 have 10 72
is dissourced, as	
is dissolved as whermedore (north) 2 well. MW-10 is shallow (so	1 1 10
well. MW-10 13 shallow (Se	with) well 1 5-10

Site: WDT Well ID: GW=+0
Date: 12/16/9/ Time: 3:50 Logger: K Baylor Int We
Ambient Air Temp (°C): 27° C Weather: http://www.
Condition of Barriers/type (Good/Bad/None):
Accessibility by vehicle (Good/OK/Bad): Good Problem Dia-lag
Ease of locating well (Easy/Difficult): Difficult
Access Type (Lock, Hex Bolt, etc.): Hex bolt
Well Cover Integrity (Good/OK/Bad): Pal Wo Steel cover)
Well Head Integrity (Good/OK/Bad):
Well Casing Diameter (2"/4"/other):
Well Cover location relative to ground level (Below) Even/Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover: None
Initial HNu reading: 0,2 Sustained HNu reading: 0.7
Is casing marked with water level measuring point (Yes/No): <u> </u>
Downhole Problems (Yes/No):
Nature of Problem/Corrective Method:
Depth to Groundwater: 40, 96 Well Construction Depth: 28.40
Well depth info from: Weighted tape
Standing water volume (.661 gal/ft for 4" well): 52.5 gal
Water Level Indicator used: Solvist
Non-Aqueous Phase Liquid (Yes/No/Unknown): Un known
Comments: WDI
denhication error in fence
belling of wells. 12W-11 Int Shallow
termediate (north) well. SIS O O SIB termediate (north) well. mw-11 Mwf10
belling of wells. MW-11 Shallow Shall
W-10 is shallow (south) well 2 F-11

Site: WDI Well ID: 6-W-13
Date: 12/16/91 Time: 3:08 Logger: 6 13aylor
Ambient Air Temp (°C): 27°C Weather: haty wwn
Condition of Barriers/type (Good/Bad/None):
Accessibility by vehicle (Good/OK/Bad):
Ease of locating well (Easy/Difficult): Difficult (See Selow)
Access Type (Lock, Hex Bolt, etc.): tex bolt (tight)
Well Cover Integrity (Good/OK/Bad): OK (rusted Steek Cover)
Well Head Integrity (Good/OK/Bad): 6 K (PVC cap)
Well Casing Diameter (2"/4"/other):
Well Cover location relative to ground level (Below/Byen/Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover: 1600
Initial HNu reading: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Is casing marked with water level measuring point (Yes/No): 1-es
Downhole Problems (Yes/No): None
Nature of Problem/Corrective Method:
Depth to Groundwater: 51.38 Well Construction Depth: 58.70
Well depth info from: Measurement by weighted type
Standing water volume (.661 gal/ft for 4" well): 4.8 gal
Water Level Indicator used:
Non-Aqueous Phase Liquid (Yes/No/Unknown):
comments: Well is located WDI fence
near vapor well.
MW-13 TS the Wapor O GW-13
acces cover to 19
the east
14) F-12

Site: WDT Well ID: CW-(4
Date: 14/1/1 Time: 2'03 M Logger: K Barylor
Ambient Air Temp (°C): 27°C Weather: cler, warm
Condition of Barriers/type (Good/Bad/None):
Accessibility by vehicle (Good/OK/Bad): Good (parting lot)
Ease of locating well (Easy/Difficult): Easy (behind Kalero Madris)
Access Type (Lock, Hex Bolt, etc.): Lex bolt
Well Cover Integrity (Good/OK/Bad): OK rusty Stee Cover
Well Head Integrity (Good/OK/Bad): OK (PVC cap)
Well Casing Diameter (2"/4"/other):
Well Cover location relative to ground level (Below/Even/Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover: Loca
Initial HNu reading: O. 4 Sustained HNu reading: O. 4
Is casing marked with water level measuring point (Yes/No): 185 If yes, give type/location black mark on W Stole
Downhole Problems (Yes/No): Vo
Nature of Problem/Corrective Method:
Depth to Groundwater: 51.55' Well Construction Depth: 57.75
Well depth info from: Weighted Tape
Standing water volume (.661 gal/ft for 4" well): 4. gal
Water Level Indicator used: Somst
Non-Aqueous Phase Liquid (Yes/No/Unknown):
Comments:
Unlocked New lock installed

106.12

site: WDT Well ID: GW- S
Date: 14/2/91 Time: 8:29 Logger: K, Baylor
Ambient Air Temp (°C): Weather: 42 coo
Condition of Barriers/type (Good/Bad/None):
Accessibility by vehicle (Good/OK/Bad): Bad (tall grass)
Ease of locating well (Easy/Difficult): WHITCHE (THI CAST)
Access Type (Lock, Hex Bolt, etc.): Hex 60+
Well Cover Integrity (Good/OK/Bad): OK SHE COVE
Well Head Integrity (Good/OK/Bad): PUC cap
Well Casing Diameter (2"/4"/other): 4 "
Well Cover location relative to ground level (Below Even/Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover: Now
Initial HNu reading: O. 4 Sustained HNu reading:
Is casing marked with water level measuring point (Yes/No): Yes If yes, give type/location has marked (Alleger)
Downhole Problems (Yes/No): No
Nature of Problem/Corrective Method:
Depth to Groundwater: 56.82 Well Construction Depth: 68.38
Well depth info from: Weighted tape
Standing water volume (.661 gal/ft for 4" well): 7,6 gm
Water Level Indicator used:
Non-Aqueous Phase Liquid (Yes/No/Unknown):
Comments:
force [0] Map shows 6w-16 GW-15 Opposite

F-14

106.48

Site: WOT Well ID: OW-/6
Date: 12/17 Time: 823 Logger: K Baylo
Ambient Air Temp (°C): Weather: PC
Condition of Barriers/type (Good/Bad/None):
Accessibility by vehicle (Good/OK/Bad): OK
Ease of locating well (Easy/Difficult): Drf Grassy
Access Type (Lock, Hex Bolt, etc.): Hex
Well Cover Integrity (Good/OK/Bad): Ok locked
Well Head Integrity (Good/OK/Bad): OK
Well Casing Diameter (2"/4"/other): 4"
Well Cover location relative to ground level (Below Even) Above)
Does it appear that water is ever able to pond over wellhead?: NO
USGS Survey data on well cover: 1/0/
Initial HNu reading: O. 6 Sustained HNu reading:
Is casing marked with water level measuring point (Yes/No): Tes If yes, give type/location hack in the same as th
Downhole Problems (Yes/No): No
Nature of Problem/Corrective Method:
Depth to Groundwater: 57,16 Well Construction Depth: 18,80
Well depth info from: <u>Sdinist</u>
Standing water volume (.661 gal/ft for 4" well): 4.3 gd
Water Level Indicator used: Solun 5+
Non-Aqueous Phase Liquid (Yes/No/Unknown): Unknown
Map show it as Garia Cence
3 6016 GW-15

WOIT F-15

Κ Λ
Site: Well ID: $\omega - (8)$
Date: 17/16/91 Time: 12:10 Logger: K Baylor
Ambient Air Temp (°C): 25°C Weather: www. cear
Condition of Barriers/type (Good/Bad/None): Uprl
Accessibility by vehicle (Good/OK/Bad):
Ease of locating well (Easy/Difficult):
Access Type (Lock, Hex Bolt, etc.):
Well Cover Integrity (Good/OK/Bad): OK (rusted Steel cover)
Well Head Integrity (Good/OK/Bad): OK (PVC Cop)
Well Casing Diameter (2"/4"/other):
Well Cover location relative to ground level (Below/Ellen/Above)
Does it appear that water is ever able to pond over wellhead?: (185)
USGS Survey data on well cover: Den
Initial HNu reading: O Sustained HNu reading:
Is casing marked with water level measuring point (Yes/No): 185 If yes, give type/location black make on Sw Side
Downhole Problems (Yes/No): Vo
Nature of Problem/Corrective Method:
Depth to Groundwater: 53.30 Well Construction Depth: 71.06
Well depth into from: measured weight tape
Standing water volume (.661 gal/ft for 4" well):
Water Level Indicator used: Soinst
Non-Aqueous Phase Liquid (Yes/No/Unknown):
Comments:

Site: WDT Well ID: GW- 19
Date: 12/16/91 Time: 12:20 Logger: K. Baylor
Ambient Air Temp (°C): 25°C Weather: P.C. / war_
Condition of Barriers/type (Good/Bad/None): None
Accessibility by vehicle (Good/OK/Bad): OK (on g auel)
Ease of locating well (Easy/Difficult): Fasy
Access Type (Lock, Hex Bolt, etc.): hex bit
Well Cover Integrity (Good/OK/Bad): OK (rusted Steel Cover
Well Head Integrity (Good/OK/Bad): OK (pVC Cap)
Well Casing Diameter (2"4")other): 4"
Well Cover location relative to ground level (Below Even/Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover: None
Initial HNu reading O. > # Sustained HNu reading:
Is casing marked with water level measuring point (Yes/No): (es If yes, give type/location blue makes to No Side
Downhole Problems (Yes/No):
Nature of Problem/Corrective Method:
Depth to Groundwater:53.15 Well Construction Depth: 58.86
Well depth info from: Mergured Twenty Tape
Standing water volume (.661 gal/ft for 4" well): 3.8 gal
Water Level Indicator used: Solikit
Non-Aqueous Phase Liquid (Yes/No/Unknown): Unk
Comments:

F-17

105.76

Site: WDT Well ID: GW-U
Date: 17/17/1 Time: 7:50 Logger: K Brylor
Ambient Air Temp (°C): 17°C Weather: haty Cool
Condition of Barriers/type (Good/Bad/None):
Accessibility by vehicle (Good/OK/Bad): OK (Asphalt by weway)
Ease of locating well (Easy/Difficult):
Access Type (Lock, Hex Bolt, etc.): Hex bolt,
Well Cover Integrity (Good/OK/Bad): 1 Rad (No Steel Cover)
Well Head Integrity (Good/OK/Bad): OK PVC Cap
Well Casing Diameter (2"/4"/other): 4"
Well Cover location relative to ground level (Below/Even/Above)
Does it appear that water is ever able to pond over wellhead?: (eS
USGS Survey data on well cover: None
Initial HNu reading: 0.8 Sustained HNu reading: 0.4
Is casing marked with water level measuring point (Yes/No): Yes If yes, give type/location lack mark on Casing
Downhole Problems (Yes/No): No
Nature of Problem/Corrective Method:
Depth to Groundwater: 49.56 Well Construction Depth: 56-8
Well depth info from: Measured Weighted tope Standing water volume (.661 gal/ft for 4" well): 4.8
Standing water volume (.661 gal/ft for 4" well): 4.8
Water Level Indicator used: Solinst
Non-Aqueous Phase Liquid (Yes/No/Unknown): Unknown
Comments:
May be a heavy wear (Atlas Steel) Integrity Appears to
be Of
55.83 F-18 nostal ap
·

Site: UDT Well ID: GW-27
Date: 12/16/91 Time: 3729 Logger: K Raylor
Ambient Air Temp (°C): 27°C Weather: haty, www.
Condition of Barriers/type (Good/Bad/None):
Accessibility by vehicle (Good/OK/Bad): Good wit drawing
Ease of locating well (Easy/Difficult): Difficult
Access Type (Lock, Hex Bolt, etc.): Hex
Well Cover Integrity (Good/OK/Bad): OK
Well Head Integrity (Good/OK/Bad):
Well Casing Diameter (2"/4"/other):
Well Cover location relative to ground level (Below) Even/Above)
Does it appear that water is ever able to pond over wellhead?: WO
USGS Survey data on well cover: No
Initial HNu reading: 2,5 Sustained HNu reading: 2,2
Is casing marked with water level measuring point (Yes/No): No. 11 yes, give type/location Blue Mark No. 51de of CASING
Downhole Problems (Yes/No): No
Nature of Problem/Corrective Method: V/A
Depth to Groundwater: 64,54 ' Well Construction Depth: 77,88
Well depth info from: (50/11/15+) 4" (asing weighted tope Standing water volume (.661 gal/ft for 4" well): 8, 8 gal
Standing water volume (.661 gal/ft for 4" well):
Water Level Indicator used: Salma
$\boldsymbol{\omega}$
Non-Aqueous Phase Liquid (Yes/No/Unknown): Vakawa Comments:
Non-Aqueous Phase Liquid (Yes/No/Unknown): Vakawa Comments:
Non-Aqueous Phase Liquid (Yes/No/Unknown): Vakawa Comments:
Water Level Indicator used: 50/100 Non-Aqueous Phase Liquid (Yes/No/Unknown): Unknown Comments:
Non-Aqueous Phase Liquid (Yes/No/Unknown): Vakawa Comments:

Site: WOI ID: 6-W-23
Date: 14/1/91 Time: 2:40 Logger: K. Baylor
Ambient Air Temp (°C): 28°C Weather: Worm clear
Condition of Barriers/type (Good/Bad/None): None
Accessibility by vehicle (Good/OK/Bad): OK parking (at Cas Niero
Ease of locating well (Easy/Difficult): Fasy
Access Type (Lock, Hex Bolt, etc.): Hex bolt
Well Cover Integrity (Good/OK/Bad): OK fulted Heel
Well Head Integrity (Good/OK/Bad): OX (PVC cap)
Well Casing Diameter (2"/4"/other): 4"
Well Cover location relative to ground level (Below/Even/Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover: None
Initial HNu reading: O, I pp Sustained HNu reading:
Is casing marked with water level measuring point (Yes/No): 185 If yes, give type/location black Smudge on casing
Downhole Problems (Yes/No): Vo
Nature of Problem/Corrective Method:
Depth to Groundwater: 58,58 Well Construction Depth: 63,38
Well depth into from: Measured with weighted type
Standing water volume (.661 gal/ft for 4" well): 3.15 gal
Water Level Indicator used: Solmst
Non-Aqueous Phase Liquid (Yes/No/Unknown):
Comments:

98.4

Site: Well ID: GW - CY
Date: 12/14 Time: 2:40 Logger: K Baylor
Ambient Air Temp (°C): 28°C Weather: www, clear
Condition of Barriers/type (Good/Bad/None): None (Pat 12707 (55 N)
Accessibility by vehicle (Good/OK/Bad): OK parking let
Ease of locating well (Easy/Difficult): Fasy (6+ at 12 to Wieros)
Access Type (Lock, Hex Bolt, etc.): hox bolt
Well Cover Integrity (Good/OK/Bad): OC Sufed Cap
Well Head Integrity (Good/OK/Bad): O C PVC cap
Well Casing Diameter (2"/4"/other):
Well Cover location relative to ground level (Relow/Even/Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover:
Initial HNu reading: O Sustained HNu reading:
Is casing marked with water level measuring point (Yes/No): 18 If yes, give type/location by the second of the sec
Downhole Problems (Yes/No): Vo
Nature of Problem/Corrective Method:
Depth to Groundwater: 64.33 Well Construction Depth: 12.90
Well depth info from: Wersted tope
Standing water volume (.661 gal/ft for 4" well): 32. gal
Water Level Indicator used: Solinst
Non-Aqueous Phase Liquid (Yes/No/Unknown): Unknown
Comments:

Site: Well ID: $6-\omega-26$
Date: 149 Time: 1:49 Logger: K Baylor
Ambient Air Temp (°C): 27°C Weather: clear, warn
Condition of Barriers/type (Good/Bad/None):
Accessibility by vehicle (Good/OK/Bad): OK por king latters Wretos)
Ease of locating well (Easy/Difficult): Faby
Access Type (Lock, Hex Bolt, etc.): Hex holt
Well Cover Integrity (Good/OK/Bad): OK (rusty steel Cover)
Well Head Integrity (Good/OK/Bad): OK (PVC cap)
Well Casing Diameter (2"/4"/other): 4"
Well Cover location relative to ground level (Relow Elen/Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover: None
Initial HNu reading: 0. 4 Sustained HNu reading:
Is casing marked with water level measuring point (Yes/No): /es If yes, give type/location
Downhole Problems (Yes/No): Vo
ullet
Nature of Problem/Corrective Method:
Depth to Groundwater: 50.6 Well Construction Depth: 62.88
Depth to Groundwater: 50.6 Well Construction Depth: 62.88' Well depth info from: mesked from weighted type Standing water volume (.661 gal/ft for 4" well): 8, 11 gal
Depth to Groundwater: 50.6 Well Construction Depth: 62.88' Well depth info from: mesked from weighted type
Depth to Groundwater: 50.6 Well Construction Depth: 62.88' Well depth info from: mesked from weighted type Standing water volume (.661 gal/ft for 4" well): 8, 11 gal

(05.44

Site: WDT Well ID: GW-27
Date: 14/16/91 Time: 12:43 Logger: K Baylo
Ambient Air Temp (°C): 25°C Weather: work clear
Condition of Barriers/type (Good/Bad/None): Not / 12894 (
Accessibility by vehicle (Good/OK/Bad): Of parking of Service
Ease of locating well (Easy/Difficult): Easy
Access Type (Lock, Hex Bolt, etc.): hex bot (1 only)
Well Cover Integrity (Good/OK/Bad): OK rusted Steel cover
Well Head Integrity (Good/OK/Bad): (PVC Cap)
Well Casing Diameter (2"/4"/other):
Well Cover location relative to ground level (Below Even Above)
Does it appear that water is ever able to pond over wellhead?: ye
USGS Survey data on well cover: None
Initial HNu reading: O. Sustained HNu reading:
Is casing marked with water level measuring point (Yes/No): 125 If yes, give type/location blue make on N. side
Downhole Problems (Yes/No): No
Nature of Problem/Corrective Method:
Depth to Groundwater: 51.70 Well Construction Depth: 63
Well depth info from: peasured weighted type
Standing water volume (.661 gal/ft for 4" well): 7.5 gal
Water Level Indicator used: Solut
Non-Aqueous Phase Liquid (Yes/No/Unknown):
Comments:
-> only I screw in cover -> ponded water around casing
- ponded water around casing

105.33

Site: W()I Well ID: GW-28
Date: 12/16/91 Time: [1:00 Logger: K Baylor
Ambient Air Temp (°C): 75 F Bweather: Clear, Worn
Condition of Barriers/type (Good/Bad/None): None
Accessibility by vehicle (Good/OK/Bad): OK buer dia and ibundations)
Ease of locating well (Easy/Difficult): Easy (Not marked in Concrete pad)
Access Type (Lock, Hex Bolt, etc.): hax belt
Well Cover Integrity (Good/OK/Bad): OK (rusted)
Well Head Integrity (Good/OK/Bad):
Well Casing Diameter (2"/4"/other):
Well Cover location relative to ground level (Below Even Abeve)
Does it appear that water is ever able to pond over wellhead?: Yes, traffic box had standing water
USGS Survey data on well cover: None
Initial HNu reading: 0.5 Sustained HNu reading: 0.5
Is casing marked with water level measuring point (Yes/No): Yes If yes, give type/location yes; 3 which as S. Side
Downhole Problems (Yes/No):
Nature of Problem/Corrective Method:
Depth to Groundwater: 52,3 Well Construction Depth: 63,52
Well depth info from: Measured
Standing water volume (.661 gal/ft for 4" well): 7.4 gal
Water Level Indicator used: Solnst
Non-Aqueous Phase Liquid (Yes/No/Unknown):
Comments:

105.01

site: WDT Well ID: GW-29
Date: 12/169/ Time: 11:15 Logger: K. Baylor
Ambient Air Temp (°C): 25°C Weather: Clear, warm
Condition of Barriers/type (Good/Bad/None):
Accessibility by vehicle (Good/OK/Bad): 0K
Ease of locating well (Easy/Difficult): Easy
Access Type (Lock, Hex Bolt, etc.): hex bott
Well Cover Integrity (Good/OK/Bad): Bad (rusted Steel Cap)
Well Head Integrity (Good/OK/Bad): Sad (cardboard cover)
Well Casing Diameter (2"/4"/other):
Well Cover location relative to ground level (Below) Even Above)
Does it appear that water is ever able to pond over wellhead?: (e)
USGS Survey data on well cover: Vone
Initial HNu reading: 0,5 Sustained HNu reading: 0,5
Is casing marked with water level measuring point (Yes/No): If yes, give type/location bue who are NW inde
Downhole Problems (Yes/No): Vo.
Nature of Problem/Corrective/Method:
Depth to Groundwater: 52.6 Well Construction Depth: 64
Well depth info from:
Standing water volume (.661 gal/ft for 4" well): 7, 5 gal
Water Level Indicator used: Pauers
Non-Aqueous Phase Liquid (Yes/No/Unknown):
Comments:

104.89

site: WDI Well ID: 6-W-30
Date: 12/16/9/ Time: 11:20 Logger: K. Baylor
Ambient Air Temp (°C): 25°C Weather: Clear Warn
Condition of Barriers/type (Good/Bad/None):
Accessibility by vehicle (Good/OK/Bad): OK / Marked on PUC cop,
Ease of locating well (Easy/Difficult): Fasy not on concrete pad)
Access Type (Lock, Hex Bolt, etc.): Lex bolt
Well Cover Integrity (Good/OK/Bad): (Custed
Well Head Integrity (Good/OK/Bad): Pad no lock, possible)
Well Casing Diameter (2"/4"/other): 4 h
Well Cover location relative to ground level Below Even/Above)
Does it appear that water is ever able to pond over wellhead?:
USGS Survey data on well cover: Doe
Initial HNu reading: 0.4 pp Sustained HNu reading: 0.4
Is casing marked with water level measuring point (Yes/No): (E) If yes, give type/location by the most on 5. Side
Downhole Problems (Yes/No): No
Nature of Problem/Corrective Method: 93,42
Depth to Groundwater: 52,54 Well Construction Depth: 93.275 Kg
Well depth info from: neasured warshted Solust
Standing water volume (.661 gal/ft for 4" well): 58 7 gal
Water Level Indicator used: Solvst 27 Jul 3
Non-Aqueous Phase Liquid (Yes/No/Unknown): Unk
Comments:

F-27

107,65

APPENDIX G CHAIN OF CUSTODY AND FIELD QA/QC FORMS

ENVIRONMENTAL PROTECTION AGENCY

REGION 9

	Office	of Enfor	rceme	ent	JUNO				CHAIN	OF CUS	TOD	YRE	COF	RD	Ó	کــــ			Sar	75 Hawthorne Street n Francisco, California 94105-39
PROJ.	27	PROJEC		AME	I				·	NO.			X	130 130 130 130 130 130 130 130 130 130	*/s]	//	7	
er Vij	ス	ature)	=}	- <u>L</u>	afe					OF CON-		/	\$\\\\{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		X	y /				REMARKS
STA NO.	DATE	TIME	COMP	GRAB		STATIC	ON LOC	ATION	-	TAINERS	6	X			7	//				
	1/12/97	3:499	1	2	W	D920	021	01		7	3	2	2							
	17.	1055		V	I. — •	D92				7	3	2	2			<u> </u>				
2	1/2/92	115451	<u> </u>	<u>/</u>	أمرا	092	02	Ц_		7	3	2	2		$oxed{oxed}$	$oldsymbol{ol}}}}}}}}}}}}}}}}}$				
,	1/2/92	4:300	<u></u>	4		D921	02/	12		7	3	2	2		<u> </u>	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$				
					<u> </u>		•		<u> </u>						<u> </u>	<u> </u>				
					<u> </u>															
															<u> </u>				-	
of the second																				
6:																				
3																				
.					***************************************											1				
<u> </u>		†														+				
																+				
Ĉ			 			· · · · · · · · · · · · · · · · · · ·				 					 	+	 			
3		 								 						-				
Relinquish	red by: /	Signature	 .,	+++	Date	/Time	Recei	ved by:	(Signature)	 	Relia	nguish	ned by	v: (Sig	anatu	re)		Date /	/Time	Received by: (Signature)
2		J.B.	of by	7	13/92	1		Fed	Ex 7483	#					, -	-				
Relinquish						/Time			(Signature)		Relin	nquish	ed by	i: (Sigi	natur	re)		Date /	Time	Received by: (Signature)
Relinquish	ed by: (Signature)	ı		Date	/Time	Receiv (Signati		Laboratory	/ by:		Date	Tin	ne	F	Remark	ks			
	-3	Dist	ributic	on: Ori	ginal Accc	mpanies S	hipment	: Copy to	Coordinat	tor Field Files	<u></u>				7					

ENVIRONMENTAL PROTECTION AGENCY Office of Enforcement	CHAIN OF CUS	-J rody	RECO	RD (Ď	DIT &	Sar	REGION 9 75 Hawthorne Street n Francisco, California 94105-3901
PROJ. NO. PROJECT NAME WDT	NO.		<u> </u>					
SAMPLERS: (Signature) Kan J. Bal	OF CON-		10/2	77/				REMARKS
STA. NO. DATE TIME O STATION LOCATION	TAINERS	\$		X				
13/92 1:00Am / WD920209 1/13/92 3:45Pm / WD 920209 1/13/921:00Pm / WD 920209D 1/13/923:45Pm / WD 920209D 1/12/923:45Pm / WD 920201	8	~	2 2					
1/2/92 3:45Pm V WD 920209	8	3 7	2 2					
4/3/921:00PM V WD920204D								
1/13/123:45PM V WD 920209D				-	-			
412/923:45P2 V WD 920201			-	-				
7/2/92/0:35An / WD920210 2/12/92/11:45An / WD920211			-					
7/2/92/1:45An V W 9202/1 4/2/92/1:30An V W 9202/2				1				
412/23:45PM /WD 92020 D			+	1	1			To the statement of the
1/12/910135 An V (109202101)			+		1		 	
7/12/92 11:45 AU / WD 9202 (1 D)			_		1			
7/2/2 4:6pm UD 920212D	1		_		1			
114111111111111111111111111111111111111					9			
Relinquished by: (Signature) Date / Time Received by:	(Signature) × # 669174861	Relinqu	ished b	y: (Sig	nature)	Date	/Time	Received by: (Signature)
Relinquished by: Signature Date / Time Received by:	(Signature)	Relinqu	ished b	y: (Sig	nature)	Date	/Time	Received by: (Signature)
Relinquished by: (Signature) Date / Time Received for L (Signature)	Laboratory by:	D	ate /Tir	me	Rer	narks	•	
Distribution: Original Accompanies Shipment; Copy to	Coordinator Field Files							

NVIRON		L PROTI			GENCY		CHAIN	HAIN OF CUSTODY RECORD							A con	REGION 9 75 Hawthorne Street San Francisco, California 94105-3901		
PROJ.	\$27		T NA					NO.		-	\(\cappa_{\cappa}\)							
SAMPLER	15: (Signa	a >	=		Bafa		- 1 · · · · · · · · · · · · · · · · · ·	OF CON-		Š		**		300			REMARKS	
STA. NO.	DATE	TIME	a Voo	GRAB	STATI	ON LOCATIO)N	TAINERS	4	3/4	\$		Z/x	<i>3</i> /				
	414	L (D:5x		ν	WDAZO	226		16	6	4	4	2_			LAB	<u> </u>	QC	
7 Page 1	7/4/92		P	ν	WD920	226	D	2					2		Double	_	10lune)	
3																		
		·									,							
₹** ¥*																		
																		
				_									*					
				\neg										\dashv				
			\dashv											\dashv				
Relinquish	ed by: (S	(ignature)		7	Date / Time 13/92 9 44	Received I	Sy: (Signature) -ed E 9174	Relinquished by: (Signature))	Date / T		Received by: (Signature)	
Relinquis	∉ d by: (s	ignature)			Date / Time	Received t	ογ: (Signature)	Relinquished by: (Signature))	Date / T	ime	Received by: (Signature)	
Relinquish	ed by: (S	ignature)			Date / Time	Received f	or Laboratory	tory by: Date / Time Remarks									*	
	:	Distri	butio	n: Ori	ginal Accompanies S	nipment; Cop	y to Coordinat	tor Field Files										

C3

ENTRONMENTAL PROTECTION AGENCY Office of Enforcement

C+1

REGION 9

		of Enfor	ceme	nt				CHAIN	OF CUS	TOD	YRE	COF	RD		T	7		San	75 Hawthorne Street Francisco, California 94105-3901
PROJ.	521	PROJEC L	NA V	ME)					NO.						7)				
SAMPLE		Za-		J.	Bafor	_			OF CON-		p		37/0			7/			REMARKS
STA, NO.	DATE	TIME	SOS SOS	GRAB	s	TATIO	N LOCA	TION	TAINERS	Q				XX	<u> </u>				
i i	7/1/92	4:30Pm			WD92	.02	28		8	3	2	2	1						
Kr.	1 ./	4:10pm		1	WD92				8	3	2	2	1						
Ř.	1 . / .	2:30PM		/	WD9				8	3	2	2	1						
	1 / /	4:30B			WD9:2	OZ T	28D	5 · · · · · · · · · · · · · · · · · · ·	1										
	HILAL	4:10PM	. *	1	WD92				Ì										•
	1./	2: 30PM			WD92									}					
					- · · · · · · · · · · · · · · · · · · ·			······································											
in the later of							<u>"-</u>												
in the second							 -												
								·									-		
\$0.00 \$0.00 \$1.00								· · · · · · · · · · · · · · · · · · ·											
Relinquish	Λ	Signature)		7	Date / Ti	me :00 A		d by: (Signature) Fod EX 691748	#	Relin	nquish	ed by	ı: (Sig	nature)		Da	ate / Tir	ne	Received by: (Signature)
Relinquish	egby: (d by: (Signature)		Relin	nquish	ed by	: (Sig	nature)		Da	ate / Tir	ne	Received by: (Signature)						
Relinquish	ned by: (d for Laborator e)	y by:		Date	/Tin	ne	Ren	narks										
		Distr	ibutio	n: Ori	ginal Accompa	nies Shi	ipment; (Copy to Coordinat	or Field Files										

ENVIRON		L PROT of Enfo			GENCY			CHAII	N OF CUS	TOD	Y RE	COF	RD.	L	· -	14	W Free	o∕` San	REGION 9 75 Hawthorne Street Francisco, California 94105-3901
PROJ.		PROJEC	T NA	ME W	DI				NO.			X		***				/	
SAMPLE	RS: (Sign	/5/	~	1	·, Be	fo			OF CON-		/								REMARKS
STA. NO.	DATE	TIME	្ត	GRAB		STATIC	N LOCAT	ION	TAINERS	/	1	X	5/0	XXX	Z	/			
14 1 14 1 14 1		_5:10		0		920			8	3	2	2	L			Lorge	bul	oble	in one UQA vial to
	L / /.	35:3		4			224		<u>X</u>	3	2	2	1				_		
	~ / ' ,	12710		V		920		D	10	3	2	2	1						
	1 . 7	25:3	1				223 224		+ +	-									
	1", /,	21241	1	1 [w	920	235	D	11		-								
	, ,																		
**: **:			<u> </u>				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·											
<i>i.</i>								٠ - د مهن	ļ. ·	-									
<u> </u>			-		 				-	<u> </u>									
y a n			\vdash						 										
									· ·										
		* i.							1										
Relinquish	ed by:	Signature		721	Date .	/Time 9:00/		by: (Signature Fed E	× # 74824	Reli	nquist	ned by	/: (Sig	nature	e)		Date / T	Time	Received by: (Signature)
Relinquish	ed by	Signatuje	,		Date	/ Time	Received	by: (Signature	,	Relin	nquish	ed by	: (Sig	nature	r)	(Date / T	ime	Received by: (Signature)
Relinquish	ed by: (Signature	j		Date	/ Time	Received (Signature	for Laborator	ry by:		Date	/Tin	ne	Re	emari	(\$			
		Dist	ributio	n: Ori	ginal Accor	mpanies SI	nipment; C	opy to Coordina	tor Field Files										

⊒N ∕ IRON	Office	AL PROT	TECT!	ION / ent	AGENCY				CHAIN	or cust	C-C		ECOI	RD-		نــد	1	50	Fr Sa	REGION 9 75 Hawthorne Street in Francisco, California 94105-390	
PROJ. Laga S	NO. 27	PROJEC	ST NA	AME U	シカ	\overline{T}				NO.			/s		**************************************		X		7/	7	
SAMPLE	RS: (Sigi	nature)		1.1	Bafe					OF CON-		/2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	17%	XV 3X			7	/		REMARKS
STA. NO.			<i>[4]</i>	GRAB		STATI	ON LOCA	TION		TAINERS	6	A.	W.	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/			<u></u>			
	41497	2 120	Ser	V	MI	920	207			8	3	_	2								
	L	2 12:30	1	لر	<u>u</u>)920	,217	<u></u>	$\frac{J \cdot J}{J}$	1	3		2	Ц		<u> </u>					
	1/3/9	2 12:30	<u> </u>	V	_	920				8	3	2	2	LI.							
X i		121205		<u> </u>	125) 920	207	ŁD.	37	/ئـنـــــــــــــــــــــــــــــــــــ	1		. i j.k.	[[/	1_	ļ!	÷ 5	7 1		£." \$	
A 1.	713/9:	2 12:30	apri		INI) 9W	217	LD_		1 1				Ľ,	<u></u>	ا نبــــــــــــــــــــــــــــــــــــ	<u>; · </u>				
	113/9	2 (2:3	ope			920		_		100	<u> </u>			Ĺ		M. (1)	ė		111	1	
30 30 41												1				77 4				7	
Par Proposition						•															
- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10																					

18. 40.4																					
12			+																		
	1 1 1		+																		
Relinquish	ed by:	(Signature		7	13/92	5.30P	rui P	red by: 151 Fed	EX 917	4850			hed by							/Time	Received by: (Signature)
Relinquish	ed by: 1	(Signature	Signature)	Relinquished by: (Signature))ate /	/Time	Received by: (Signature)								
Relinquish	ed by: (/Signature	,)		Date	boratory	pratory by: Date / Time Remarks														
*	-	Dist	tributir	on: Or	iginal Accr	ompanies \$	ihipment;	Copy to C	Coordinat	tor Field Files	,										

FIELD QA/QC SUMMARY FORM

Instructions: C	complete one form per labo	ratory and pe	r matrix fo	r each samp	oling event.
Date: $\frac{2}{l}$		Site: W		•	
Sampler: K.	Bayler case/s	AS #: LV2	527		. •
office: $P-3$	_/ Labora	itory: Reg	9		
Phone #: 4-1	1490	J		•	
Matrix: <u></u>	OroundwaterSurface	Soil	_Air		:.
(check one)	Surface WaterSubsurf	ace Soil	_Other		• •
I. BLANKS					OUND SAMPLES
Sample #	Type (circle one)	Date Colle		Sample #	Date Collected
WD920235	Equip / Field Travel	2/12/9	-,	Mare	
WD920232	Equipy Field / Travel	711/9	<u></u>		
wD920233	Fouin / Field / Travel	2/13/97			
***************************************	Equip / Field / Travel		-		
****	Equip / Field / Travel				
	Equip / Field / Travel			III. LAB Q	
#1	Equip / Field / Travel		·-	Sample #	Date Collected
	Equip / Field / Travel		ι	UD92027	6 2/12/92
	Equip / Field / Travel				
	Equip / Field / Travel				
	Equip / Field / Travel				
	Equip / Field / Travel				
				•	
IV. DUPLICATES					
Sample #	Matches Sample # Dat	te Collected	Type (cir	ccle one)	
WD920201	WD920212 24	12/92	(a)/b/c	c / d	a = composite split
wD920207	WD920217 3/1	3/92	@/b/0	c / d	b = consecutive
			a/b/c	c / d	c = colocated
			a / b / c	c / d	d = consecutive
,		·	a / b / c	c / d	soil sleeves
			a/b/0	c / d	
V. Checklist of	f Field Problems Encounter	:ed			•
None		—— ample ∦ / Date	e(s) of Occu	urrence / C	amments
Pumping Equip	pment Problems	_ ,		·	
Sample Filter			 		•
	quired Sample Volume	•			
Low Flow/Red	-				
Preservation					
	Shipped in 24hrs.		***************************************		:
Federal Expre			7		,
Other	_	D120223	Marson h.	460 in	ne UCA VIal/2/12/92
	anation (on the back of th	e form or att	ach a pagel		

2-7

ENVIRON	NMENTA Office	L PROT	ECTI	ON A	GENCY			СНА	IN O	F CUS	TOD	Y RE	COF	₹D	4	'	4 14	(A)	پاپ Sai	REGION 9 75 Hawthorne Street n Francisco, California 941	05-3901
PROJ. LV2 SAMPLE	S27	Low		GRAB . T	D] Bay	STATIC	ON LOCAT	TION		NO. OF CON- AINERS	Á				X S X X X X X X X X X X X X X X X X X X		**************************************	\ 	/	REMARKS	
	Y13/a	8:00	AM	V	ND	920	233			8	3	2	2	1							
	13/97	8:39	m	V	UD	920	234	<u> </u>		8	3	2	2	1							
	1/3/92	8:001	٠,	<u>~</u>		920		-	_	1					1						
	1/3/92	\$:30A	en_		LUD	920	234	<u>D</u>		1					1						
	<u> </u>																				
		ļ	<u> </u>						_												
	<u> </u>																				
	<u> </u>	ļ																			
	<u> </u>	ļ															 				
	ļ								_												
∯• 2. 5		<u>.</u>																			
					· · · · · · · · · · · · · · · · · · ·				_						•	_	· · · · · · · · · · · · · · · · · · ·				

	<u></u>																 -	-		,	
Relinquish 2/4	ned by:	Signature) In	1/1) 3/92	/Time :007%	Receive	d by: Isignary	% . 84 (# 0	Relir	iquish	ed by	i: (Sig	nature))ate /	Time	Received by: (Signature)	
Relinquish	ned by: (Signature			Date	/ Time	Receive	d by: (Signatu	re)		Relin	quish	ed by	: (Sig	nature	·/)ate /	Time	Received by: (Signature)	
Relinquish	ned by: (Signature	ı		Date	/Time	Received (Signatur	d for Laborat e/	ory by	·:		Date	/Tin	ne	Re	emark	s				
		Distr	ributio	n: Ori	ginal Acco	mpanies SI	nipment; C	Copy to Coordi	nator F	ield Files					-1/						1

EPA Contract Labor PC	States Environmental Protection Agency poratory Program Sample Management Offic PO Box 818 Alexandria, VA 22313 703-557-2490 FTS 557-2490	(For Inorganic CLP An	y Record	AS No. applicable)	Case No.
Project Code Account Code Regional Information	2. Region No. Sampling Co. X Sampler (Name)	Airbill Number	Express	6. Preservative (Enter in Column D)	7. Sample Description (Enter in Column A)
Non-Superfund Program Sie Name WASTE DEPEND, Av. S Site Spill ID S MILE SKINGA, 9 CI	Sampler Signature Manage & Nemodial 4. Type of Activity Remedial SF Remedial RD REM PRP PA RA REM ST SSI O&M OIL FED LSI NPLD UST	(918) 251-054 ATW. NIGOY	, & PECH. SERVICES , Smite C & 74012 SHERMAN	1. HCI 2. HNO3 3. NaOH 4. H2SO4 5. K2CR2O7 6. Ice only 7. Other (SAS) (Specify) N. Not preserved	1. Surface Water 2. Ground Water 3. Leachate 4. Rinsate 5. Soil/Sediment 6. Oil (SAS) 7. Waste (SAS) 8. Other (SAS)
Numbers # Low Type: from Med Comp./	D TE - RAS Analysis Preservative from Box 6 P	Regional Specific Station Tracking Number Location or Tag Numbers Number	H Mo/Day/ Samp Year/Time Initia Sample Collection		Designated Field QC
MYJ119 2 L Grado	2 X	GN-28 WD9205287W	05-12-92/1540 MD		
14/1 20 2 L Grob	2 X	GW-28 WD 720528W			0.0
1115 29 2 L Grab	2 X	GW-32 WD 92053200			EQUIP. BLANK
195 30 2 L Grab	2 X	GW-32 WD 9205 22M			EQUIP. BLANK
	2 X X	GW-23	05-12-92/17:00 MD1 05-12-92/17:20 MD1		
M216 2 L Grab	0 1	GW-24	05-12-92/17:20 ND 05-12-92/18:10 ND	1 1 2 1	
1 2 L Mab	7 / 1		25-12-92/18:20 MM		
2 L Grab	2 X	0W-10	05-13-92/11:15 VIDI		
MI 2 2 1 Avad	2 X		95-13-92/11:20 MDV		
Sipplient for Case Page 1 of 4	Sample used for a spike and/or			hain of Custody S	eal Number
		CHAIN OF CUSTODY RECORD			
Relinguished by: (Signature) M. J. W	thinks a mol Fax	Relinquished by:	(Signature) Date	e / Time Rece	ved by: (Signature)
Relinquished by: (Signature)	Date / Time Received by: (5		(Signature) Date	e / Time Rece	ved by: (Signature)
gecejved by: (Signature)	Date / Time Received for Lat (Signature)	boratory by:Date / Time	Remarks Is custody	y seal intact? Y/N	/none

2-10

Project Code: Account Code	d States Environmental Protection Agency aboratory Program Sample Management Office PO Box 818 Alexandria, VA 22313	& Cha	in of Custod	Report y Record	(if appli	No. icable)	Case No.
egional Information Superfund Program The Name State Site Spill ID The Name State Site Spill ID The Name	Sampler (Name) Sampler Signature 4. Type of Adjivity Ramedial Remove Lead Pre-RIFS CLEM REMA	4. Date Shi 5/14/9 Airbill Number 1 6 5 5. Ship To	ber 3890113	弘	1. 2. 3. 4. 5. 6. 7. N.	Preservative Enter in olumn D) HCI HNO3 NaOH H2SO4 K2CR2O7 Ice only Other (SAS) (Specify) Not preserved	7. Sample Description (Enter in Column A) 1. Surface Water 2. Ground Water 3. Leachate 4. Rinsate 5. Soil/Sediment 6. Oil (SAS) 7. Waste (SAS) 8. Other (SAS) (Specify)
CEPC A B C Sample Conc. Sample Low Type (from Box 7 High Grab	D E - RAS Analysis e Preser-Metals Low High Regio	F onal Specific king Number og Numbers	G Station Location Number	H Mo/Day/ Year/Time Sample Collection	Sampler Initjals	J Corresp. CLP Org. Samp. No	K Designated Field QC
新祖 2 L G	2 X		6W-11	5/13/92 13:30	MDW	YK979	}
10 119 12 C C	2 x		6W-30	5/13/42 17:10		4K982	4
242 6	2 1		Gw - 30	5/13/92 17:10			
20101 2 6 G	2 X		GW-01	5/12/92 17:22	K3	YK97.	3
190102 2 6 6	2 X '	•	GW-01	5/12/92 17:27			
140103 2 L G	2 X	,	6w-02	913/92 11:25	43	4K974	1
1012 L G	7-1 X		GW-02	5/12/92 11:25	43		
11052 LG	2 X		Gw-04	5/13/92 17:30	43	4K975	5
1062 L 6	2 X	1	GW-04	5/13/92 17:30	KB		
ipment for Case Page 1 of 4	Sample used for a spike and/or duplic	cate	Additional Sampler S	Signatures	Chair	n of Custod	y Seal Number
			USTODY RECORD	···			
ellhquished by: (Signature)	Date / Time Received by: (Signa Feb. E)	ture) 2 1/3 2	Relinquished by	: (Signature)	Date / T	ime Re	eceived by: (Signature)
elinquished by: (Signature)	Date / Time Received by: (Signal	ature)	Relinquished by		Date / T		eceived by: (Signature)
eceived by: (Signature)	Date / Time Received for Laborat (Signature)	tory by:	Date / Time	Remarks is c	ustody se	al intact?	Y/N/none
ISTRIBUTION:	EPA Form (2075-6), previous edition which ma s py White - Lab Copy Yellow - Lab Copy for		Split Samples	Accepted (Sign	ature)		000571

ØE	P/			States Endors Food Box 8 703-557	-2490	FTS 5	57-249	00		& Ch	rganic Traffic ain of Custoc (For Inorganic CLP A	dv Reco		SAS (if ap)	No. plicable)		e No. 8134
Project Co		Accoun	t Code	2. Reg	9		Sam	pling C	PA-	4. Date Si	nipped Carrier	EX	.,		Preservative (Enter in Column D	D (E	ample escription Inter Column A)
regional inio	madon			Sample		enne) Err	<u> </u>	T 12	aylor		6389011	32		1	. HCI		Surface Water
Non-Superfur Site Name	nd Prog	ram		Sample 4. Type	er Sigi	nature	J.	Berg	Remova				محما	_	. HNO3 . NaOH . H2SO4 . K2CR2C . Ice only	3. 4. 5.	Ground Water Leachate Rinsate Soil/Sediment Oil (SAS)
Waste By State Star Fe	C ,		Spill ID		PA SSI LSI	Pre- medial	RIFS RD RA O&M NPLD		CLEM REMA DIL DIL DIST	B/2	merica, so w. H	bury, w, OK	Dre V	7 1) Z_N	Other (SAS) (Specify I. Not preserve	7. \	Waste (SAS) Other (SAS) (Specify)
GIP: Sample Numbers (GIR: Ebels)	A Enter from Box 7	Low	C Sample Type: Comp / Grab	D		- RA	S Ana Low conc.		Region Trackir	F al Specific g Number Numbers	G Station Location Number	H Mo/Day Year/T Samp Collect	ay/ ime ole	l Sampler Initials	J	g.	K Designated Field QC
H 971/23	2	ول	G	2	X	1	7		•		GW-34	5/13/92	16:40	KB	YK98	9 Bla	ak
34	12	_	G	2_			****				6W-34	5/13/92	16:40	- 50	1 (1)		nK
	1	1															
												<u> </u>					
	,	-				-				•	·. ·	1:					
	## 	•				-											
	사명 5개	-		-			-		-			·					
					+		+										
	-31						+	_	+			1					
hioment for C	ase	Page 1	of 4		nple u	sed fo	or a sp	ike and	Vor duplica	ıte	Additional Sampler	Signatures	 L	Chai	n of Custo	ody Seal Num	ber
implete? (Y/	N)		-, t				·			·.	·					·	
			,		:,						CUSTODY RECORD)					
elinäüjshed b	y: (Sig	nature)	Se	5/14/c		e (స్తార	1	ived by	Signatu 8901		Relinquished by	: (Signature)	Date /	Time	Received by:	(Signature)
elingvished b	y/Sig	nature)		Date	/ Tim	е	Rece	ived by	: (Signatu		Relinquished by	: (Signature)	Date /	Time f	Received by:	(Signature)
					1 8				-								
e ved by:	(Signatu	ure)		Date	7 Time	e		ived for ature)	Laborato	y by:	Date / Time	Remar	ks Is cu	stody se	eal intact?	Y/N/none	
A Form 9110-	(Rev. 5	-91) Rep	olaces El	PA Form	(2075-	6), pre	vious	edition v	vhich may	be used	Split Samples	Accepted	(Signa	iture)			
STRIBUTION:	_			****		_					_	Declined					

1 020572

9 E	PA	Cor	United ntract La	State: borato PO Bo 703-	s Environ ry Progr x 818 / 557-249	nmental F am Samp Jexandria 30 FTS !	rotection le Manag VA 2231 57-2490	Agency gement C	ffice	& Chair	nic Traffic Ren of Custody or Organic CLP Analys	Record	SAS No (if applica		Case No. 18134
1. Project Cod		ecount	t Code			gion No	NE	ing Co.	A	4. Date Shipp 5/13/12	Feder?	Express	•	Preser- vative Enter in	7. Sample Description (Enter
Regional Inform	nation			- · · ·		Ner (Nar RG/E		ÆINE	12	Airbill Numbe	18901062	,	C	olumn D) HCI	in Column in Surface Wa
Non-Superfund	Progra	im			Samp	ler Sign	iture,	Wei		5. Ship To	NALYTICAL	SERVICES	2. 3.	HNO3 NaHSO ₄ H ₂ SO ₄	2. Ground Wat 3. Leachate 4. Rinsate
Site Name WASTED City, State SANTA FE	16PO	Si	JW ite Spill		3. Type SF PRP ST FED	PA SSI	VITY RA		MA M	1760 Cerr (213)	5 Fabrica V Itas, CA. 0 1921-9831 HERYL FERG	Vay 100701	5. 6. N.	Other (Specify) Ice only Not preserved	5. Soil/Sedime 6. Oil (High on 7. Waste (High 8. Other (Specify)
Numbers	# from	Low	C Sample Type: Comp./ Grab	fror Box	ve –		E Inalysis Pest/ PCB	High only ARO/ TOX	11001	F nal Specific ing Number y Numbers	G Station Location Number	H Mo/Day/ Year/Time Sample Collection	l Samplei Initials	J Corresp. CLP Inorg. Samp. No.	K Enter Appropriate Offor Designated Fiel B = Blank S = Spi D = Duplicate PE = Perform. Eva — = Not a OC Sam
7K982	2	L	Stab	. 7	6 >		×	100			WD920528			MJ119	
XK987	2	L (Grab	1/6	0 >	\leq	×			GW-32	WD920532	5-12-92/11:5		MJ129	EQUIP. BLA
NK980.	2	1 10	Grob	1/6	0 >		X				GW-23	5-12-92/19:0		MJ115	
8/K98)	2	L 6	21010	1/0	e >		$\perp \times$				GW-24	5-12-02/18:11	o how	MJ117	
			-,	,	_				:.			,	 		
						4 12	,		<u>.</u>	· '		ļ			
						13:		-		· · · · · · · · · · · · · · · · · · ·			<u> </u>		
\$36.50° X (4)					14-	3	 		<u> </u>					~	1
				- 1	- 13 - 29		-	\vdash							
Shipment for Complete? (Ya	ase F	Page 1	of	-	Sampi	e used fo	ora spik	e and/o	r duplica	ate Ad	ditional Sampler Sign	natures	Chain o	Custody Sea	al Number
Ž e					<u></u>						STODY RECORD				
Relinquished by	r: (Sign - WV	ature)	1		92	ime 0 00	Receiv	ed by:	(Signatu	re)	Relinquished by: (5	Signature)	Date / Tin	ne Receive	ed by: (Signature)
£ 5						(Signatu	re)	Relinquished by: (Signature)			ne Receive	ed by: (Signature)			
Relinquished by	: (Sign	ature)	¥	D	ate / T	ime	Receiv (Signa	ed for L ture)	aborato	ry by:	Date / Time	Remarks Is cu	stody seal	intact? Y/N/n	one
EPA Form 9110-2 DISTRIBUTION: Blue - Region Cop							•					Accepted (Signal	ture)		

S EP	United S Contract Labo PC	ates Environnatory Program Box 818 Alex 03-557-2490	nental Protection Sample Mani Kandria, VA 22 FTS 557-249	n Agency agement Office 313	& Chair	nic Traffic R n of Custody or Organic CLP Analy	Record	SAS No. (if applicable	e)	Case No.
1. Project Code	Account Code		on No. Sam		4. Date Shipp 5/14/9	ed Carrier	= . =x	va	eser- itive nter in	7. Sample Description (Enter
Regional Information	l	Sample	r (Name)	T Baulor	Airbill Nambe	01154		Col	umn D)	in Column A
Non-Superfund Prog	gram	Sample	Signature	S. L.	5 OL 1 T		1 Services	1. H 2. H 3. N	NO3 aHSO4	2. Ground Wat 3. Leachate 4. Rinsate
1 70	posal, Inc Site Spill IC C1		of Activity RIF Remedial RD PA RA SSI O& NPI		176 Cerr	- Analytical 05 Fabri 17-5, CA erul Fer	a liky 90701 54500	4. H 5. Of 6. Id N. N	2SO4 ther Specify) se only lot eserved	5. Soil/Sedime 6. Oil (High on 7. Waste (High 8. Other (Specify)
FCLP Enter Sample Numbers Cfrom Space Spac	Low Type: Ned Comp./ High Grab	D reser- ative rom lox 6 VOA	E RAS Analysi BNA Pes PCI	High Track or Ta	F nal Specific ing Number g Numbers	G Station Location Number	H Mo/Day/ Year/Time Sample Collection	Initials	J -Corresp. CLP Inorg. Samp. No.	K Enter Appropriate Or for Designated Field B = Blank S = Spik D = Duplicate PE = Perform Eval — = Not a QC Samp
44976 ~	L Gras 1	16 X	XX			GW-07	5/12/92 2:3	(PTAL	my5107	•
A Jabels Box 7	1 Gab 1	16 X	XX		<u>: </u>	GW-1+	5/13/92 3:15	en 3/15	MYJ127	Dupe of G
C Line A	18	· ·				<u> </u>	-			
L as To										
공 										
			23 21				<u> </u>			
o 8		<u> </u>	31.00			: (
100 T				*. :	· · · · · · · · · · · · · · · · · · ·		<u> </u>	-		÷
Shipment for Case	Page 1 of	Sample	sed for a so	ike and/or duplica	to Ad	ditional Sampler Sig	inati ires	Chain of (Custody Sea	l Number
complete? (YM)	9- 101-	TA S	ارون المارية	ူ့	*	σ	; :			
8 5		1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		<u>्र हैं।</u> ; वे (CHAIN OF CU	STODY RECORD		1	<u> </u>	
Relinquished by: (Sig	gnature) 5/	Date / Tim	e Rece	ived by; (Signatu See Ex 3 89 0110	re)	Relinquished by: ((Signature)	Date / Time		d by: (Signature)
用ellinquished by: (Signature)	nature)	Date / Tim		ved by: (Signatu		Relinquished by: ((Signature)	Date / Time	Receive	d by: (Signature)
Relinquished by: (Sig	gnature)	Date / Tim		ived for Laborator ature)	y by:	Date / Time	Remarks Is cu	l stody seal in	tact? Y/N/no	one
EPA Form 9110-2 (Rev. 5	5-91) Replaces EPA	Form (2075-	7), previous e	dition which may b	e used		Accepted (Signa	ture)		

SEE DEVENSE FOR ADDITIONAL STANDARD INSTRUCTIONS A 0 2 2 0 0 E

% F	P	Д а	United Contract La	d Star abora PO F	tes Er tory F Box 8	nvironm Program 18 Ale:	nental Pr n Samp kandria,	otection e Manag VA 2231	Agency ement O 3	ffice	& Chair	nic Tra	stody	Record	ď	SAS No (if applica			Case No.
1. Project C	ode		nt Code		13-55/	/-2490	F15 5	57-2490 Sampl	_		(For the strain of the strain	or Organic (LP Analysi	s)			Preser-		7. Sample
					-	· A	1	ع. بد	s. El	OA	5/14/	12 Fed	eral E	Køas	5	,	vative Enter in		Description (Enter
Regional Info	rmation					-	r (Nam	θ) .	. :		Airbill Numbe	r .					olumn D)	'	in Column A
1785	2	_			<u></u>	<u>Jer</u>	ry 1	May	mell			1010:	13			1.	HCI		Surface Wate Ground Wate
Non-Superfu	nd Prog	ram			Sa	amplei	r Signa	ture Ma		11	5. Ship To	146 - 1	San			3.	HNO3 NaHSO ₄		Leachate
Site Name					$-\frac{1}{3}$	TVOR	of Activ	rity Re	medial St	Removal	17605				-	4. 5.	H ₂ SO ₄ Other		4. Rinsate 5. Soil/Sedimer
Waste	Dice	450 1	. In			Leak	Pre-	RIFS	[Z]C	Removal EM MA	Corito	-abril	007	~/ ·/			(Specify) ice only		6. Oil (High onl) 7. Waste (High
City, State	7 537		Site Spil			RP	PA [RA	RI	EM 🔲	(211)	171+9	831	01		N.	Not		8. Other (Specify)
Saah Fe S	Pars,		901		, ,	ED	LSI	O&M NPL		5 🗆	WILLIA OF		Fergus	on			preserved		(0)
CLP	A Enter	В	С		O			E nalysis		Pagio	F nal Specific	1 (3 ′	H Mo/l		Sample	r Corres	. =	K nter Appropriate Qu
Sample Numbers	#	Conc.	Type:	va	eser- ative	<u> </u>	1707	Talysis	High	Tracki	na Number	Loc	tion ation	Year/	Time	Initials	CLP Ino	rg. f	or Designated Field
(from a labels)	from Box 7	Med High		Bo	on e	VOA	BNA	Pest/ PCB	only ARO/ TOX	or rag	Numbers	Nur	nber	San Colle			Samp. N	10.	B = Blank S = Spik D = Ouplicate PE = Perform, Eval, — = Not a QC Sample
YK978	2	LOW	grab		4	K	X	X	10%			GW-	0	8/13/9	2/11:30	m	MYTI		
V K979	2	104	9/45		ξ	K	K	X.				GW-		5/13/9			MYJII		
VK 984	. 7	low	grab	7 7	6	. Ku	X	X				GW-		5/13/57	117:10	Jm	MYDIZ		
				13		حتاف	7.			•	·		-		7171	J			
Dive				Т	П														
₹¥.E	7				П		:			. •		- 1				å			
2=	4 de 2	2	,	$oxed{\Box}$		Á													
\$	* ************************************	7 =					7 . A						_						
3 3					Ш		<u> </u>						٤٠,						
o b	:						<u> </u>												
Shipment for complete?	Pase N)	Page	1 of		Sai	mble r	used fo	r a spik	e and/c	r duplica	te Ac	ditional Sa	mpler Sign	atures		Chain c	of Custody	Seal N	lumber
											HAIN OF CU			 	· ·	· · · -	15	·····	
Relinquished	by: (Sig	nature, د	1		∪ate	e / Tim		Heceiv	ed by:	(Signatul	re)	Relinquis	ned by: (S	ignature)		ate / Tin	ne Rec	eived l	oy: (Signature)
Lines	Mary	ull	2	5/1	419	2 9	00												
Relinquished	by: (Sig	nature,				e / Tim	16	Receiv	ed by:	(Signatui	гө)	Relinquis	hed by: (S	ignature)		ate / Tim	ne Rec	eived l	oy: (Signature)
(0) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1					<u>.</u>	i	% () ()												
Relinquished	by: (Sig	nature,	, 		Date	e / Tim	e			aborator	y by:	Date	/ Time	Remarks	s Is cus	ody seal	intact? Y/	N/none)
10 TO						1		(Signat	ture)										
	<u>) 5</u>					<u></u>	4					Split Sam	oles 🗔 4	ccepted	(Signati	roi			
		_					. :					I JUIL Jaili	- 100 I I F	u a ierlii H()	(Uigridit	n v j			
EPA Form 9110- DISTRIBUTION:		i-91) Re	places E	PA F	-orm	(2075-	7), prev	ious edi	ition wh	ich may b	e used			Declined	. •	•			

Q FD	United Contract La	States Environr boratory Program PO Box 818 Ale 703-557-2490	nental Protec	tion Agency magement O	Orga Orga Obeli	anic Traffic Re	eport Record	SAS No. (if applicable)	Case No.
		703-557-2490	xandria, VA 2 FTS 557-2	22313 490	& Chai	n of Custody For Organic CLP Analys	is)		18134
1. Project Code	Account Code		on No. Sa		4. Date Ship 5/14/9	ped Carrier	E _K	6. Preservative	Descripti
Regional Informatio	າ	Sample	r (Name)		Airbill Numb	er	¬,	(Enter i Column	in (Enter D) in Columi
17. 51.50 51.50 5.00 5.00 5.00 5.00 5.00 5		11		TR	11-11-13	8901143			1. Surface V
Mon Superfund Pro	ram	Sample	r Signature	0, 130	5. Ship To			1. HCl 2. HNO3	2. Ground W
6 4		1/2		Dala		IT maly	head services	3. NaHSC 4. H2SO ₄	3. Leachate 4. Rinsate
Site Name		3. Type	of Activity	Remodial	Removal	IT Amby. 17605 Fab	rica luxy	5, Other	5. Soil/Sedir
Site Name	251 T	SF S	Remedial P	IFS TO CL	EM MA	Cerosos CA	90761	(Specil	7. Waste (Hi
City State	Site Spil	<u>~</u>]PA 🗔 R	A R	М	-4 11108 J01		N. Not	8. Other
Single Sprin	A. C 4	FED	LSI	&M OI	ATTN: C	haryl Fersu	(a.	preserv	ea (=p==.,)
E CLP A	BC	[م	E		F	G	Н		J K
Sample Enter	Conc. Sample		RAS Analy		Regional Specific Tracking Number	Station Location	Mo/Day/ Year/Time	Sampler Corr Initials CLP I	esp. Enter Appropriate lnorg. for Designated F
F from from	Med Comp./	from		High: only	or Tag Numbers	Number	Sample Collection	Samp	No. B. Biank S. S
from Box 7	High Grab	BOX 6 VOA		St/ ARO/			Conection		D = Duplicate PE = Perform, E = Not a QC Sa
4K974 2	L Gral		× >	CB LOX	<u></u>	GW-02	3/3/92 11:251	n X/3 MY3	
YK975 2	L G	1/2 2	×			GW-04	5/13/92 5:109		105
YK988 2	1	1/6					+	~ 20 My J	
	1 6	1/6	 	×		6W-33	T-7		
YK.989 2	LG	1/6	-		· · · · · · · · · · · · · · · · · · ·	GW-34	5/13/92 4:401	m 1215 1747	133 Slank
THE COLUMN TO TH	<u> </u>	1.6		, 		 			
		- II	 _ _ _ _				-	 	
B 2 5	3	5			· · · · · · · · · · · · · · · · · · ·				<u> </u>
0 2 2 3 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		→	\$.			-			
李 条	7. 7.1	ر ي ي			<u> </u>			ļ.:	<u> </u>
		13 2	\$		X ≤ E	1 2 5 5			
Shipment for Case	Page 1 of	_ Sample	sed for a	spike and/o	r duplicate A	dditional Sampler Sigr	natures 🐉 📜	Chain of Custo	dy Seal Number
Silpment for Case complete? (YN)		₹₫			5 2 g				
K T	₹ <u>777 <u>1</u>3</u>	O See	1 1			JSTODY RECORD			<u> </u>
Relinquished by: (Si		Date / Tin	1	eived by:	(Signature)	Relinquished by: (5	Signature) [Date / Time F	Received by: (Signature)
Kan	Brita	9/14/92 11:	DOAN !	1380	(EX:				
Belinquished by: (Si	gnasure)	Date / Tin	ne Red	eived by:	(Signature)	Relinquished by: (5	Signature) [Date / Time F	Received by: (Signature)
				,			-		
fact to the contract of the co			0000	·					79.74
Belinquished by: (Si	gnature)	Date / Tin		ceived for L gnature)	aboratory by:	Date / Time	Remarks Is cus	tody seal intact?	Y/N/none
first of the state		+	105	,,	• •				•
		<u> </u>				Split Samples 7	Accepted (Signate	ure)	
EPA Form 9110-2 (Rev.	5-91) Replaces E	PA Form (2075-	7), previous	edition whi	ch may be used			•	
DISTRIBUTION:							Declined		

<u>a.</u>

SEE BEVERSE FOR ADDITIONAL STANDARD INSTRUCTIONS 0 22002

••	· FIELD OA	√QC SUN	MARY FORM				
Instructions:	•	•		matrix f	for each sam	pling ev	ent.
Date: 5	16. 92		e: WD	T	- .	-	
Sampler: <u>L</u>	Baylor Co	se/SAS		34	_		
office: 1-3	La	borator	y: IT	Analyti	isal Serv	ices	
Phone #: 74	4-1490			/			
Matrix:	Groundwater Sur	face So	oil	_Air			; ,
(check one) _	Surface WaterSub	surface	e Soil	Other		-	
I. BLANKS					II. BACKGE	NOUND SAM	PLES
Sample #	Type (circle one)		Date Collec	cted	Sample #		Date Collected
YK 987	Equip / Field / Tra	wel	5/12/9	2_	None		
YK 988	Equip / Field / Tra	wel	5/13/9	2			
1 K 989	Equip / Field / Tra	wel	5/13/9	2			
	Equip / Field / Tra	wel			•		
	Equip / Field / Tra	rvel					
£	Equip / Field / Tra	wel		_ _	III. LAB (C SAMPLE	<u>s</u>
	Equip / Field / Tra	avel			Sample #	_	Date Collected
	Equip / Field / Tra	avel		·	YK98	<u>S</u>	3/12/92
	Equip / Field / Tra	avel					
	Equip / Field / Tra	evel				-,	
	Equip / Field / Tra	avel			•		
	Equip / Field / Tra	avel					
IV. DUPLICATES	<u> </u>			,			
Sample #	Matches Sample #	Date	Collected	Type (c	ircle one)		
YK976	YK986	5/13	92	a(b)	c/d	a = con	posite split
YK973	4K985	5/12	192	a /6/	c/d	$b = \infty$	secutive
				a / b /	c/d	$c = \infty$	located
				a / b /	c / d	$d = \infty$	rsecutive
•				a / b /	'c / d	so	il sleeves
				a / b /	c / d		
V. Checklist	of Field Problems Encou	untered					
None		Samp.	le 🛊 / Date	(s) of 00	currence / (Comments	
	uipment Problems					·	
	ering Problems						
	Required Sample Volume		•		·		
Low Flow/Re	echarge Rates						

Additional Explanation (on the back of the form or attach a page)

Preservation Problem

Federal Express Delay

Other

_Samples Not Shipped in 24hrs.

FIELD QA/QC	SUMMARY	FORM
-------------	---------	------

Instructions: Complete one form per lab	outses and nor mai	trix for each samplin	g event.
	oratory and per and	T	
Date: 15 May 92	Site: 1813		
Sampler: Kaylor Case/	W 1.	 	•
office: ρ - 3-1 Labor	atory: Marie	- Analytical	
Phone #: 4-1490	∞ Soil Air		; .
Macrix:			
(check one)Surface WaterSubsur	rface SoilOth	ler	
		II. BACKGROUN	D SAMPLES
I. BLANKS		_	Date Collected
Sample # Type (circle one)	Date Collected	None_	-
MYT129 Equip/Field/Trave	1 5/12/92	1000	
MYT 30 Equip / Field / Trave			
MY [3] Equip / Field / Trave			
MYJ 132 Equis / Field / Trave	= 112/0		
MYJ 133 Equip / Field / Trave		III. LAB QC	SAMPLES
MIJ 134 Equip / Field Trave		Sample #	Date Collected
Equip / Field / Trave		MYTIZI	5/12/92
Equip / Field / Trave		MUT 122	5/12-/92
Equip / Field / Trave		MYJ 122	-11-/
Equip / Field / Trav	el		
Equip / Field / Trav	el		
Equip / Field / Trav	el		
IV. DUPLICATES			
Sample # Matches Sample #		Type (circle one)	a = composite split
MY+101 MY5 (25	5/12/92	" (Ex	b = consecutive
MYT102 MYT126	912/92		$c = \infty located$
M45107 M45127	5/13/92	a /@/ 6 / 5	d = consecutive
MYJ 108 MYJ128	5/13/92		soil sleeves
	· Security Control of the Control of	a/b/c/d	SOII SIEEV
		a / b / c / d	
v. Checklist of Field Problems Encou	ntered		
None	Sample # / Date(:	s) of Occurrence / Co	mments
Pumping Equipment Problems	-		
Sample Filtering Problems			
Less Than Required Sample Volume			
Low Flow/Recharge Rates			
Preservation Problem			
Samples Not Shipped in 24hrs.			
Federal Express Delay	•		
Other			
Additional Explanation (on the back	of the form or atta	ach a page)	

6.19

ॐ E	P	4 0	United ontract La	d States Entors boratory PO Box 8	nvironm Program 118 Alex	ental Pro Sample andria, V	otection / e Manag /A 2231	Agency ement O 3	ffice	& Chã	in of	Traffi Custo anic CLP	ody I	Record	d	SAS No (if applica		Case	10. 134	,
1. Project Co		· · · · · · ·	nt Code	- 2	Regio	on No.	Sampli	ng Co.		Date Shi	pped Ca		. ,			1	Preser- vative Enter in	D (8	ample escription	E.
Regional Info			, <u></u>	* * *	Kar	(Name herry Signal	こて	<u>مَكِم .</u>	ylor	Ship To	890	1165			· · · · · · · · · · · · · · · · · · ·	1.	olumn D) HCl HNO3	- T.S	Column Surfāce W Ground W	ater
Site Name					Za		ity Ro	Soly media DZICL	Removal	-i.	IT	Aa1 05	lyna Fabi	l Sa nica	Vices Citar	3. 4. 5.	NaHSO4 H2SO4 Other	4. F	eachate Rinsate Soll/Sedin Oil (High c	Tinen Rylon
Maste City, State	- Di		Site Spil		RP ED	PA SSI	RD RA O&M	RE	MA M	ATTN:	Cher	705,C	A	907	701 /	6. N.	(Specify) Ice only Not preserved	7. V 8. C	Vaste (Hig Other (Society)	all only)
CLP Sample Numbers (from labels)	A Enter # from Box 7	B Conc. Low Med High	С	from Box 6	VOA	RAS A	Pest/ PCB	High only ARO/	Tracking	F I Specific Number Numbers		G Station Location Number	า 5 ก <u>ร</u>	Mo/l Year/	H Day/ Time mple ection	Sampler Initials	Corresp. CLP Inorg. Samp. No.	for Des	K opropriate signated Fi Blank S=S D = Duplicate = Perform, E	Qualifier eld QC pike
1K973	2	L	Gray	1/6	<i>у</i> -	X	X	TOX			G	-w-	01 %	5/12/97		260	MYJIOI	<u> </u>	Not a QC Sa	mple
1K985	2	4	Gmb	1/6	X	X	X		D 1	f.d		W-1	<u>5</u>	5/12/92	-	A B	M45125	Dope	of 6	w-01
1905	2	<u></u>	ظمر	1/6	X	X	_X_		Lab	e Udu QC	احی ہے۔	<i>u</i> − 2	-6	5/12/92	· · ·	J.D	M45(2)			
									- 7 8 (2)		(r \c)	-		1		į.	3			
					3.	g			<u> </u>		-	- 3.		à, E	<u> </u>	E	1 Page 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
- 154 	÷,		2.7		7									1				F-		
			활기									:		3 ,		` .				
nipment for Complete? (Y	ase N)	Page	1 of	_ Sa	imple ü	1 '- 1		able	r duplicate	ne	Addition	al Sampl	ler Sign	atures	ý.	Chain o	f Custody Se	al Numbe	r	
						1,				AIN OF C	USTOD	Y RECO	RD -							
elinquished t				5/13/q	e/∏im	° .∞,	Receive F	-ed	(Signature) Ex. ₩ 39 O (((Relin	quished	l by: <i>(S</i>	ignaturė)		Date / Tim		ed by: <i>(S</i> , ម ្រី	ignature)	
elinquished	y: (Sig	hature) 	Dat	e/Tim ျ	в	Receiv		(Signature)		Relin	nquished	d by: <i>.(S</i> ু	ignature)		Date / Tim	ne Receiv	ed by: (S	ignature)	
alinquished b	ōy: (Sìg	nature,	\$ 100 mg	Dat	e/Tim	9 -	Receiv (Signat	ed for L	aboratory t	by:		Date / Ti	me	Remarks	s is cus	stody seal	intact? Y/N/r	none	<u> </u>	
A Form 9110-2 STRIBUTION: ue - Region Co	opy Pi	nk - SM							•			Samples		ccepted	(Signal			2	-4.	de II
py for Return	IO SMU										SEE R	EVERSE		DITIONAL	STANDAI	RD INSTRU - 🚉	CITORS O	0338	96	

SEE REVERSE FOR ADDITIONAL STANDARD INSTRUCTIONS

STORES OF STREET

Copy for Return to SMO

.;.

1-0-0

 \mathbf{U} 339332

\$ E	P/		United entract Lat						fice	& Chai	nic Train of Cus	ffic Re stody f LP Analysis	port Record	S. (if	AS No. applicable	9)	Case	No. 8609
1. Project Co	mation	•	nt Code	S	ampler	(Name	y o	ng Co.		4. Date Ship 12/42 Airbill Number 2 5/9 5. Ship To	er e	ted 55	EX		va (Ei		1	Sample Description (Enter in Column A) Surface Water Ground Water
	ST SSI O&M OIL ATT CLP A B C D E RAS Analysis Regional Special Regional R											CA Mour	alyting 1 Lag. 9200	1/2e	3. N 4. H 5. O 6. k	aHSO4 2SO4 ther Specify) se only	3 4 5 6	Leachate Rinsate Soil/Sediment Oil (High only) Waste (High only) Other (Specify)
CLP Sample Numbers (from labels)								High only ARO/ TOX	Track	F nal Specific ng Number g Numbers	Stat Loca Num	tion Ition	H Mo/Day Year/Tin Sample Collectio	ne i		J Corresp. CLP Inorg Samp. No	i. for Di	K Appropriate Qualifier esignated Field QC = Blank S = Spike D = Duplicate D = Perform Evel Not a QC Sample
12326	7 2	L	G	l	/						60		5/7	3×150.7	70 x	71807		
41335	2	<u>L</u>	ے	-	1						CU	~0 t	9/12/92	750 MJ 1-86 AM		44560 44561		
YL338	2	1	6	1	V				•		Gw	-12	7462 7	:30P	ans I	4476	\$5.	£ Y1326
4 339	2	1	G		1/						GU	-17	1/2/92 8	150114	AID K	4562	71)00	FYL329
4 (340	12	L	G	ì	V						GW-	-37		0:00A	<i>n</i>	44562	-9 BC	AUK
YL336.	2	L	6								Gw.	- 26	142 1	50 Ph 7	AID N	1 362	Dow	He Guar
Ž. X	,i					i							/				`	CAU CO
\$.J									,				ę,					
Shipment for Complete? (Y		Page	1 of		ample u	ised fo	r a spik	e and/o	13 C	olome C	dditional Sar		atures	C	Chain of	Custody S	eal Num	ber
ু ্ট Relinqyished l	hv: (Sic	nature) [Dat	te / Tim	e	Receiv	ed hv.	(Sign ạ tı	CHAIN OF CU		CORD ned by: (S	Signature)	Dat	e / Time	Bece	ived by:	(Signature)
ZIB	al	1		112/91		00 PM	#	251	961	1255	·							,
Relinquished by: (Signature) Date / Time Received by: (Signature)									ire)	Relinquished by: (Signature)				e / Time	Rece	ived by:	(Signature)	
Relinquished t	oy: (Sig	nature	,	Dat	te / Tim	е	Receiv (Signat		aborato	ry by:	Date	/ Time	Remarks	Is custod	ty seal in	ntact? Y/N	l/none	
EPA Form 9110- DISTRIBUTION: Blue - Region C Copy for Return	opy Pi	nk - SM									Split Same		Accepted (Signature		TIONS)220	1231

	CHAIN OF CUST	TODY RE	CORD		Sar	Francisco, California 94105-3901
PROJ. NO. PROJECT NAME [V2 S6] Naste) is posal Inc	NO.		1700			
SAMPLERS: (Signature)	OF CON-	15		7///	,	REMARKS
STA. NO. DATE TIME OF STATION LOCATION	TAINERS	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7 3//			
FW-02 /12/92 10:05An / 16 327	4	22			<u> </u>	·
6W-24 92/92 2:40 m U YL 334	4	22	; ,		· · · · · · · · · · · · · · · · · · ·	
Gw-3=/1/925:00m VYL337	4	22		·	<u> </u>	
QUOZ 91244005M 1 MYJ 604			1			
auoz 8/12/92/0:0547 UMYJ 635	1		1			
Gw-24 9/1/12 2:40m MY5617			1			
CW-24 /1/922:40m MYJ618						
6W30/12/025ian / M45623	1					
6W-30/12/915:08m 1/MYJ624			i			
				5		
Relinquished by: (Signature) Date / Time Received by: 13/92 1-200 25196	(Signature) d = x # 12200	Relinquish	ed by: (Signati	ure) Da	ite / Time	Received by: (Signature)
Relinquished by: (Signature) Date / Time Received by:		Relinquish	ed by: (Signatu	ure) Da	ite / Time	Received by: (Signature)
Relinquished by: (Signature) Date / Time Received for I (Signature)	Laboratory by:	Date	/Time	Remarks		
Distribution: Original Accompanies Shipment; Copy to	o Coordinator Field Files					

75 Hawthorne Street

CHAIN OF CUSTODY RECORD San Francisco, California 94105-3901 PROJECT NAME 室PROJ. NO. NO. SAMPLERS: (Signature) REMARKS CON-**TAINERS** GRAB DATE TIME STATION LOCATION STA. NO. 2 2 2 Received by: (Signature) Relinquished by: (Signature) Date / Time Relinquished by: (Signature) Date / Time Received by: (Signature) Date / Time Relinquished by: (Signature) Date / Time Received by: (Signature) Received by: (Signature) Relinquished by: (Signature) Date / Time Remarks Date / Time Received for Laboratory by: (Signature) Distribution: Original Accompanies Shipment; Copy to Coordinator Field Files

						CHAIN OF CUS	TOD	YR	ECOF	RD				Sar	Francisco, California 94105-3
PROJ.		PROJEC	T NA							//	\ @/	//			
LY256			<i></i>			NO.			/1-	7/40		1/	/ / /		
AMPLE	RS: (Signa	ature)		<i>(</i>	7 /	OF		/	05/2			/ /			
	Ko	رح	¥.	/-	ayla	CON-		/	/ 9				/ /		REMARKS
TA. NO.	DATE	TIME	COMP	GRAB	STATION LOCATION	TAINERS		2/2	Z) (Z)	(z /					
v-01	8/12/92	909			YL329	4	2	2							
u-01 "		0820		V	иуЈ 607	1									
u _.		0821		V	MYJ 608	1			1						
	8/12/42	0823		/	Y L 3 3 9	4	2	2							
	اشما	0835		V	MYJ627				1						
n		0837		V	му5628	1									
1-23	8/12/92			/	YL333	4	2	2							
"	I I	1410		V	MXJ615										
4	"	1410		V	MXJ616				ı						
i.															
								<u> </u>							
,															
															:
	, 64. ,														
inquish	ed by: (S	Signature)	fe	1	Date / Time Received by: 5:30PM # 25	Isignature) Ted Ex 19612244	Reli	nquist	ned by	y: (Sig	nature	?)	Date	/Time	Received by: (Signature)
nquish	ed by: (s	Signature)			Date / Time Received by:	(Signature)	Relin	nquish	ied by	i: (Sigi	nature	J	Date	/ Time	Received by: (Signature)
inguish	ed by: (S	Signature)			Date / Time Received for (Signature)	Laboratory by:	1	Date	 e / Tir	ne	Re	emarks	 	.	1

	CHAIN OF CUS	TODY	RECO	RD			San	Francisco, California 94105-3901
W2S6 PROJECT NAME WDI	NO.						7	
STA. NO. DATE TIME OF THE STATION LOCA	OF CON- TAINERS	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\]			REMARKS
		18	3/0	7/				
W-01 91/62 4:40M / 12326	4	++-	2		_		n	
10-26 9/1/92 2:25PM V Y L 336 20-01 9/1/924:40PM V MYJ602 30-01 9/1/924:40PM V MYJ603 30-26 9/1/92 2:15PM V MYJ621	7	3 (4		_	Doubk	e Va	done CAB OC
Tw-01 94/924:40m / MYJ602								
0-01 94424:40PM V MIT 603		 						
16-26 91622:15P4 VMYJ621	2	1 1	2			Double	_Vo	Line LABOR
W-26 /1/422:25An UMYJ 622	2	1	2			Double	Vo	lune LAB QCHI

						-		
176 246						·		
Kan Baylon 912/92 2:00 m 2	ed by: (Signature) Fed Ex # 51961296	Relinqu	uished by	y: (Signa	ture)	Date /	Time	Received by: (Signature)
telinquished by: (Signature) Date / Time Receive	ed by: (Signature)	Relinqu	uished by	l: (Signa)	ture)	Date	Time	Received by: (Signature)
Pelinquished by: (Signature) Date / Time Receive (Signature)	ed for Laboratory by: rel		Date / Tin	ne	Remark	s		
Distribution: Original Accompanies Shipment;	Copy to Coordinator Field File	s						

							CHAIN	OFCL	<u> USTO</u>	DY H	FCO	<u>RD</u>						San Francisco, California 94105
PROJ. I	[PROJEC	ANT:		Dis	-S-1	Too	NO.			/				//	//		
SAMPLER			4 - 1		7	- 10		1			1	71	75/		/ /			
		2	جد		Ba	igh		OF CON-				15/		/	//			REMARKS
STA. NO.	DATE	TIME	COMP	GRAB		STATIC	ON LOCATION	TAINE	RS	Ž.	Y	3		/			·	
GW-04	913/92	9:550		U	71	32	8	4		. 2		ļ	<u> </u>					
GW-12	13/97	8:201	1	1/	41	331		4	2	. 2								
ر 3د -سای	CI'	J	1	1/	YL	341		4	2	2				(2	ce (CS1/	PCB	low whome
GWOY	10/1	1	_	11	MY	Jic	5				1							
GW-04	8/13/12	9:55		12	174	Jh	56	1			1							
60-13	c. /	1	1	u	My	J.()	1	1			1	<u> </u>		_				
GW-10	13/12	8.001		1/	MY	761	2		_		1				<u>,</u>			·
GW-33	8/17/91	9:201	-	1	MY	16	31	1_1_			1							
an-33				V	MY	16	37				\downarrow	<u> </u>						
									_	_				\perp				·
											ļ							
								:	_				e					
			ļ								_							
									_								,,,,	· · · · · · · · · · · · · · · · · · ·
Relinquish		Bay	Çn	8/	13/92	Time	15196/221	#					gnature)				/ Time	Received by: (Signature)
Refinquish	ed by (Signatůre,	,		Date	/ Time	Received by: (Signature)		Re	linquis	hed b	y: (Sig	nature)			Date /	/ Time	Received by: (Signature)
Relinquishe	ed by: (.	Signature	l		Date	Time	Received for Laboratory (Signature)	y by:		Da	te /Ti	me	Rema	arks				
		Disti	ributio	n: Ori	ginal Acco	mpanies SI	nipment; Copy to Coordinate	or Field F	iles									

ENVIRONMENTAL PROTECTION AGENCY Office of Enforcement

REGION 9

	CHAIN OF CUSTO	DDY RECORD	Sa	San Francisco, California 94105-3901		
PROJ. NO. PROJECT NAME						
LU2S61 Waste Digosal Inc	NO.	/ / <i>}</i> }				
SAMPLERS: (Signature)	OF	37/3/2				
Kar Daylor	CON-			REMARKS		
STA. NO. DATE TIME OF STATION LOCATION	TAINERS	\$\\$\\$\\ \]				
GW-11 9/3/92 10: 30/1 / YL332 GW-11 9/3/12 10: 30/1 / MYJ613	4 :	2 2				
GW-11 9/3/12 10:30A / MYJ613						
GW-11 3/3/210300 UMYJ614	1					
		(2)				
Relinquished by: (Signature) Date / Time Received by: 13/92 2:0000 # 25	(Signature) Ri メ た x 5 96 2233	elinquished by: <i>(Signatu</i>	Date / Time	Received by: (Signature)		
Relinquished by (Signature) Date / Time Received by:		elinquished by: <i>(Signatu</i>	Date / Time	Received by: (Signature)		
Relinquished by: (Signature) Date / Time Received for I (Signature)	Laboratory by:	Date / Time	Remarks			
Distribution: Original Accompanies Shipment; Copy to	o Coordinator Field Files					

FIELD QA/QC SUMMARY FORM

Instructions; Complete one form per la	boratory and per matrix fo	or each sampling event.
Date: \$17/92	Site: WDL	
Sampler: Baylo Case	/SAS #: LV2561	
office: $\hat{p} - 3 - 1$ Labo	oratory: Reg. of	
Phone #: 4-1490	. •	
Matrix: Surfa	ce SoilAir	:.
(check one)Surface WaterSubst	urface SoilOther	-
I. BLANKS		II. BACKGROUND SAMPLES
Sample # Type (circle one)	Date Collected	Sample # Date Collected
YL340 Equip / Field / Trave	el <u>711/97</u>	No ne
41 Equip Field / Trave	el 9/3/22	
MYJ631 Rouin Field / Trave	el <u>8/13/9</u>	
MY J632 Equip Field / Trave	$\frac{9}{13}/92$	
MYJ629 Agrif / Field / Trave	$=1 \frac{8/11/92}{}$	
MYT630 Equip / Field / Trave	el <u>911/92</u>	III. LAB QC SAMPLES
Equip / Field / Trave	el	Sample # Date Collected
Equip / Field / Trave	el	YL336 8/11/92
Equip / Field / Trave	el	MYJ621 711/62
Equip / Field / Trave	el	MTJ 622 911/92
Equip / Field / Trave	el	
Equip / Field / Trav	el	
		·
IV. DUPLICATES		
Sample # Matches Sample #	Date Collected Type (c	ircle one)
YL 338 YL 326	9/11/92 a /D/	c / d a = composite split
YL339 YL329	712/92 a/B)	c / d b = consecutive
MYJ60> MYJ625	8/11/92 a/6X	c / d $c = \infty located$
MY5603 MY5624	8/11/92 a/b/	c / d d = consecutive
MYJ607 MYJ627	8/12/92 a/6/	c / d soil sleeves
MYJ608 MYJ628	9/12/92 a/6)	c / d
V. Checklist of Field Problems Encoun	tored	
None	Sample # / Date(s) of Occ	www.coments
Pumping Equipment Problems	Sample # / Date(s) Of Oct	currence / willenes
Sample Filtering Problems		
Less Than Required Sample Volume	4L341 Pest/PCB	1/ YL 336 BUAS for less ac
Low Flow/Recharge Rates	1651 Vessi volume	11 1233 3 6703 FOR 120 LCC
Preservation Problem		
Samples Not Shipped in 24hrs.		
Federal Express Delay		
Other		
Additional Explanation (on the back of	the form or attach a sec-	\ <u>\</u>
	^	
·	C-29	

FIELD QA/QC SUMMARY FORM

Instructions: C	omplete one form per 1	laboratory and per	r matrix for each	sampling e	event.
Date: 917	1az	Site:	DI		
Sampler: Bay!	or cas	se/SAS #: 8	09	,	
office: ρ -3	Lab	poratory: Pack	Analy Keal	Labs	
Phone #: 744	-1490	•	,		
Matrix:	Groundwater Surf	ace Soil	_Air		:.
(check one)	Surface WaterSubs	surface Soil	Other		-
I. BLANKS			II. <u>BA</u>	OKGROUND SA	MPLES
Sample #	Type (circle one)	Date Colle	cted Sample	ŧ	Date Collected
YL340	Equip / Field / Trav	$vel = \frac{9/11/92}{}$	No	<u> </u>	
42341	Equip Field / Tran	vel $\frac{8/13/9}{1}$	<u> </u>		
	Equip / Field / Tran	vel			
	Equip / Field / Tra	vel			
	Equip / Field / Trav	vel			
	Equip / Field / Tran	vel		AB QC SAMPI	LES
	Equip / Field / Tran	vel	Sample	#	Date Collected
	Equip / Field / Tra	vel	YL 3	.36	8/11/92
	Equip / Field / Tra	vel			
	Equip / Field / Tra	vel			
	Equip / Field / Tra				
**************************************	Equip / Field / Tra				
**************************************		·		•	
IV. DUPLICATES					
Sample #	Matches Sample #	Date Collected	Type (circle on	æ)	
YL338	YL326	8/11/92	a/b/c/d		composite split
YL339	YL329	912/92	a / b / c / d		onsecutive
1579	100-1		a/b/c/d		olocated
***************************************			a/b/c/d		onsecutive
•			a/b/c/d		oil sleeves
	•		a/b/c/d	_	
			<i>=, =, =,</i> =		
\ /	f Field Problems Encour				
None		Sample # / Date	(s) of Occurrence	/ Comments	5
	pment Problems				
	ring Problems				
	quired Sample Volume				
Low Flow/Red					
Preservation					
	Shipped in 24hrs.				
Federal Expr	ess Delay				
Other					
Additional Expl	anation (on the back of	f the form or att	ach a page)		

Use attach a page)

APPENDIX H HEALTH AND SAFETY PLAN

APPENDIX A

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION 9 OFFICE OF POLICY AND MANAGEMENT HEALTH AND SAFETY OFFICE

SITE SAFETY PLAN FOR HAZARDOUS SUBSTANCES RESPONSE AND FIELD INVESTIGATIONS

I. DESCRIPTION OF FIELD ACTIVITY:
Site: <u>Waste Disposal, Inc.</u> Site Phone: <u>none</u>
Location: Los Angeles, CA Superfund: Yes X No
SSP Prepared By: <u>K. Baylor</u> Mail Code <u>(P-3-1)</u> Phone <u>4-1490</u>
Proposed Date of Response/Investigation: February 10-14, 1992
Purpose/Objective: <u>Quarterly groundwater sampling scheduled to star</u> February 92. The objective of this quarterly monitoring is to suppor Record of Decision due in April, 1993 to determine future action a the site.
Background Review: CompleteX_ Preliminary
Background Material Attached: YesX_ No
Indicate which of the following information source(s) were consulted State and/or Local Agency, State and/or Federal OSHA, NIOSH, EPfiles, Site Operator and Local Fire Department. EPA files_(Remedia Investigation)
Overall Hazard Summary: Low X High
Medium Unknown
Route of Exposure: Inhalation _X_ Skin Contact _X_ Ingestion
Map or Sketch Attached: Yes X No

II. <u>SITE CHARACTERISTICS</u>:

A. Facility Description: Waste Disposal, Inc. is a closed landfill containing a 1,000,000 barrel capacity concrete-lined reservoir. Over a period of 40 years, various oil-field and industrial wastes were disposed in and near the reservoir, in lined and unlined waste handling areas. B. Hazardous Substance(s) Description: Previous groundwater sampling at the site has shown low levels of organics and metals, with most contaminants below or near the drinking water Maximum Contaminant Limits (MCLs). Disposal/Storage Methods: Historically, purge water from monitoring wells has been disposed of on the ground or to the storm drain. Status: Active Inactive Unknown E. History: (Include accidents or injuries on site, complaints public, previous releases and agency reports): Numerous releases and illegal discharges in 1950's and 1960's. Facility closed and covered with clean fill in 1966. F. Is personal protective equipment required by Facility/Site Management? List equipment and specific areas where required: Unknown. Several of the wells are located on RCRA-regulated facilities, which may require hardhats and safety boots. G. Are employees working at the facility/site monitored for exposure to airborne contaminants? If so, describe situation: Unknown H. Do employees working at the facility/site participate in an cupational medical monitoring program? If so, are special biological tests performed or Biologic Limit Values (BLVs) used? Unknown I. Describe medical monitoring procedures for evidence of personnel exposure: <u>Unknown</u> J. Is there an on-site emergency alarm system? If so, describe alarm:

H-2

plain alternate procedures (where applicable): Unknown. A portable

Is there an eyewash/safety shower available on site?

eyewash will be brought into the field.

If not, ex-

III. HEALTH AND SAFETY CONSIDERATIONS:

<u>Hazard Assessment</u>¹ (Toxic effects, TLV, odor threshold, reactivity, stability, flammability, and operational hazards with sampling, decontamination, etc.): <u>Low hazard. Previous sampling indicates low concentrations of volatile organic constituents and metals.</u>

Areas of Concern ²	Hazard Potential ³	<u>Precautions</u>
Explosion:	low	
Oxygen Deficiency: (e.g. Confined Spaces)	low	Personnel will not enter
Radiation:	low	<u> </u>
Toxic Gases: a. General (HNU meter)	low	<u>HNu will be used to</u> check wells on opening
<pre>b. Specific: (e.g., Sorbent or Detector Tube)</pre>	low	
Skin/Eye Contact:	low	
Heat Stress:	low	
Falling Objects: (e.g. stacked barrels, etc.)	low	
Falls: (e.g. pits, ponds, ele- vated work places, etc.)	low	
Confined Spaces: (e.g. manholes, vaults, closed rooms, trenches, etc.)	low	Personnel will not enter confined spaces.
Snakes:	moderate	Personnel will use caution in high grass.

Note 1: Attach copy of Hazardous Substance Information Form (Appendix C), Material Safety Data Sheet (MSDS), OHMTADS, Hazardline printouts, etc..

Note 2: See Chapter 2, FHSM, "Atmospheric Hazard Action Guides"

 $\underline{\text{Note 3}}$: Subjective evaluation (e.g., low, moderate, high, unknown or not applicable.

IV. WORK PLAN INSTRUCTIONS:
Hazardous Substance Sampling and Field Investigations
A. Level of Protection: A B C _X_ D _X_
Modifications: HNu will be used to check wells. APRs will be used if HNu reading is greater than 1 ppm after venting 5 minutes. Only two wells have previously shown HNu readings higher than 1ppm; of these, only GW-10 will be sampled. Well GW-10, with a sustained HNu reading of 2.5ppm, will be sampled on level C. Well # GW-03, located on a Recreational Vehicle storage lot, will not be sampled. A site visit (12/91) indicated an HNu reading of 22 ppm sustained, although previous water analyses indicate low levels of organic contaminants.
Surveillance Equipment and Materials: HNu
B. Entry Procedures: N/A
C. Field Investigation and Decontamination Procedures:
Perimeter Establishment: Zones of Contamination Identified? No
Public Perimeter Identified? <u>No</u> Map/Sketch Attached? <u>Yes</u>
Notes:
Team Make-Up: EPA _X FIT TAT CG STATE OTHER
Station Designation (Name/responsibility): 1. <u>Katherine Baylor, lead sampler, Health and Safety</u> 2. <u>Peter Husby, sampler</u> 3. <u>Clarice Olson, sampler</u> 4. <u>Roseanne Sakamoto, sampler</u>
Work Schedule/Limitations: <u>None.</u> <u>During the February sampling event, heat stress is not expected to be a factor. <u>Modifications may be necessary for future sampling events at this site.</u></u>
Hot Line Location (initial): None
Command Post - Location (initial): None - Radio Call Sign: None - Frequency/Channel: None
Equipment and Materials/Special Facilities: None. There is no phone, water, or electricity available on site.

Decontamination Procedures (contaminated protective clothing, instruments, equipment, etc.): Decontamination of field equipment will consist of a non-phosphate soap wash, deionized water rinse, nitric acid rinse, and hexane rinse. No re-usable protective clothing will be worn. Any disposable clothing (tyvek, gloves) will be discarded.

Disposal Procedures (contaminated equipment, supplies, disposal items, wash water, etc.): All disposable protective clothing (tyvek, gloves) and disposable sampling equipment (rope, pipettes, etc) will be double bagged and transported to the Alameda Field Staging Area for disposal at a municipal landfill in accordance with all local, state, and federal regulations. The hexane rinse will be contained in a separate bucket and allowed to evaporate on-site. Well purge water will be contained in 55-gallon drums for future disposal. If analytical results indicate a low level of contamination (at or near Drinking Water MCLs), the purge water may be disposed of on-site. If the purge water is found to be hazardous, it will be left on-site in 55-gallon drums for disposal as funding permits.

V. <u>EMERGENCY PRECAUTIONS</u>:

Acute Exposure Symptoms

Agent	Symptom	First Aid								
Hydrochloric Acid	Choking, burns eyes and skin - colorless gas	flush w/water for 15 min - transport to med. facility								
Nitric Acid	Burns, brown stain, suffocating odor	Apply cold water to burn area. Transport to medical facility.								
_ <u>Hexane</u>	Nausea, weakness, lightheadedness	Remove to fresh air. Wash affected area								
	tal Emergency Room. Not									
	Community Hospital Bloomfield Ave, Norwalk, (CA 90650								
B. Emergency Service	es (Telephone Numbers)									
	1. Fire: 911 2. Police: 911 3. Ambulance 911									
	Center of San Francisco rdous Chemicals: 415-476-0	5600 (24-Hr.)								
D. Regional Health	and Safety Office: 415-74	44-1607 or -1606								
E. Regional Radiat	ion Representative: 415-74	44-1048								
F. Office of Radiation Programs, Las Vegas Facility (ORP-LVF): 702-798-2476 FTS 545-2476										
APPROVALS:		Date:								
Project Team Leader: 28/92										
Supervisor: (P-3-1) / Still 1/28/92										
Supervisor: (P-3-2) / Study 1/29/92										
Health and Safety Office: Uhis Welluce 2392										

EPA-9 FORM HS0003 BLG.007 1/89